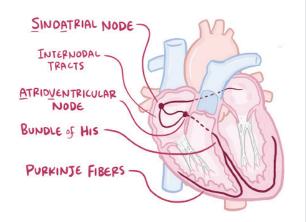


ACTION POTENTIALS IN PACEMAKER CELLS

osms.it/pacemaker-cell-action-potentials

Pacemaker cells

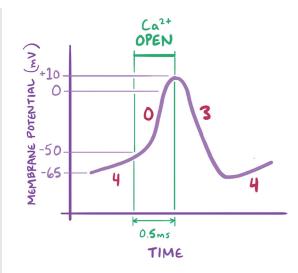

- Groups of cardiac muscle cells with ability to spontaneously create action potential (automaticity) and comprise intrinsic conduction system
- Directly influenced by sympathetic and parasympathetic nervous systems
- Comprise about 1% of heart cells
- Differ in speed of spontaneous depolarization
- Cells with fastest rate of depolarization at any given time determine heart rhythm
 - Remaining/slower cells called latent pacemakers

SA node

- Primary pacemaker cells located in wall of right atrium
- Rate: 60–100bpm
 - Usually determines normal heart rhythm

Latent pacemaker cells

- AV node
 - Located at base of right atrium, near septum
 - □ **Rate:** 40–60bpm
- Bundle of His
 - Divides into right and left bundle branches, travels through septum between ventricles
 - **□ Rate:** 20–40bpm
- Purkinje fibers
 - Spread throughout ventricles
 - Rate: 20-40bpm


Figure 17.1 Locations of pacemaker cells within the heart.

Action potentials in pacemaker cells

- Rapid electrical changes across membrane of pacemaker cells
- Conducted to rest of heart

Action potential phases

- Phase 4: sodium moves into cell through funny channels (open in response to hyperpolarization); slowly depolarizes cell until threshold potential met
 - Responsible for instability of resting membrane potential
- Phase 0: strong inward calcium current; responsible for rapid depolarization
- Phase 3: strong potassium current moves out of cell; responsible for repolarization
 - Phases 1, 2 absent in pacemaker cells
 → no plateau

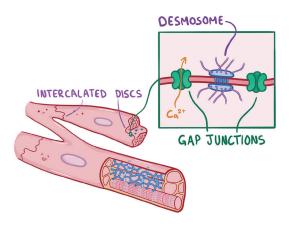
Figure 17.2 Graph depicting the action potential of a pacemaker cell.

ACTION POTENTIALS IN MYOCYTES

osms.it/myocyte-action-potentials

Myocytes

- Receive signal from from pacemaker cells causing them to contract
- Able to depolarize, spread action potentials
- Action potential phases:
 - Phase 0 (depolarization phase): rapid influx of sodium into cell (inward current); responsible for rapid depolarization
 - Phase 1: sodium current stops, potassium slowly flows out of cell; depolarization stops, re-polarization starts
 - Phase 2: calcium current moves into cell, balances potassium current moving out of cell; charge balance between inside, outside of cell creates plateau


- Phase 3: calcium current moving into cell stops; potassium current moving out of cell continues; repolarization continues
- Phase 4: potassium current moving out of cell approaches equilibrium between inside, outside of cell; sodium, calcium current moving into cell balance outward potassium current; resting membrane potential achieved

ELECTRICAL CONDUCTION IN THE HEART

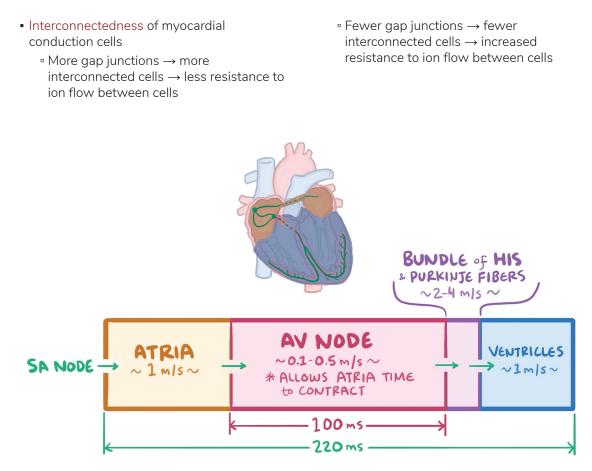
osms.it/heart-electrical-conduction

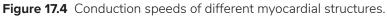
- Transmission of electrical signals across heart cells leads to rhythmic myocardial contraction
- Intercalated discs connect cells and allow myocardium to act as syncytium
 - Contain desmosomes (holds cells together) and gap junctions (areas of low resistance to electrical flow)
- Cardiac action potential: sequential flow of electrons across ion channels in cardiac cell membranes, resulting in electrical activation of myocardial cells
 - Depolarization: cation movement into cell, producing positive cell charge relative to outside
 - Polarization: anion movement into cell, producing negative cell charge relative to outside
- Pathway of electrical conduction
 - Sinoatrial node (SA node) → atrial internodal fibers → atrioventricular node (AV node) → bundle of His → Purkinje fibers → ventricular myocytes

 These structures responsible for electrical conduction, spontaneous depolarization; do not generate contractile force

Figure 17.3 Desmosomes and gap junctions present at intercalated discs allow the myocardium to act as a syncytium.

CARDIAC CONDUCTION VELOCITY


osms.it/cardiac-conduction-velocity


- Speed at which depolarization wave spreads among myocardial cells
 - Measured in meters per second (m/s)
- Each myocardial structure has a different conduction speed related to its purpose
 - Slowest: AV node
 - Fastest: Purkinje fibers
- AV delay: slow conduction through AV node ensures adequate ventricular filling
 - Speed: 0.01-0.05m/s
 - Blood flows from atria to ventricles

 Rapid conduction through Purkinje fibers ensures adequate blood ejection
 Speed: 2–4m/s

Velocity depends on two factors

- Amount of ions going into cell during action potential
 - \circ More ions \rightarrow faster depolarization \rightarrow faster spread
 - \circ Fewer ions \rightarrow slower depolarization \rightarrow slower spread

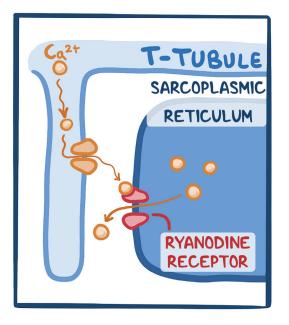
EXCITABILITY & REFRACTORY PERIODS

osms.it/excitability-refractory-periods

Refractory period

- Time in which myocardial cell cannot be depolarized
- Absolute refractory period: no stimulus, no matter its size, can depolarize cell
 - Phases 0, 1; part of phase 2
- Effective refractory period: large stimulus can generate action potential
 - However, too weak to be conducted
- Relative refractory period: large stimulus can generate action potential
 - Big enough to be conducted

Excitability


- Ability of myocardial cells to depolarize in response to incoming depolarizing current
- Supranormal period: < normal stimulus may produce action potential large enough to be conducted
 - Resting membrane potential has not yet been achieved
 - Membrane potential closer to threshold than normal, refractory periods over

CARDIAC EXCITATION-CONTRACTION COUPLING

osms.it/cardiac_excitation-contraction_coupling

- Plateau in action potential of myocyte membrane allows influx of calcium, stimulating muscle contraction
 - Calcium enters cell via L-type voltage gated channels
 - Higher intracellular Ca²⁺ triggers release of more Ca²⁺ from sarcoplasmic reticulum through ryanodine receptors (AKA calcium-induced release)
 - Released Ca²⁺ attaches to troponin C

 → tropomyosin moves → actin-myosin cross bridges → contraction
- Cross bridges last as long as Ca²⁺ occupies troponin
 - Tension is proportional to intracellular Ca²⁺ concentration
- Intracellular Ca²⁺ removed by two mechanisms that induce relaxation, keep Ca²⁺ from damaging cell contents
 - Ca²⁺ ATPase uses ATP energy, Na⁺/ Ca²⁺ ATP exchanger uses Na⁺ inward current to remove Ca²⁺ from cell through sarcolemmal membrane, remove Na⁺ through Na⁺/K⁺ ATPase
 - Ca²⁺ ATPase removes Ca²⁺ into sarcoplasmic reticulum; calsequestrin 2 inside sarcoplasmic reticulum binds Ca²⁺, keeping it inside

Figure 17.5 Depolarization of a cardiomyocyte by calcium-induced calcium release.

CARDIAC LENGTH TENSION

osms.it/cardiac-length-tension

- Degree filament overlap correlates to tension
 - $L_{max} = 2.2 \ \mu m$ is maximal tension
 - In shorter/longer cells, tension will be decreased
- $\uparrow L \rightarrow \uparrow Ca^{2+}$ sensitivity of troponin $C \rightarrow \uparrow Ca^{2+}$ release from sarcoplasmic reticulum
- Can extend to ventricle length/tension relationship curve
 - Cardiac muscle < elastic than skeletal; only ascending curve demonstrates its contraction

- ↑ resting tension: small changes produce ↑ tension
- Frank–Starling basis; ↑ fiber length → stronger contraction
 - Preload = LV end-diastolic volume (L), if
 ↑ means ventricular fiber length ↑
 - Afterload = aortic pressure; if preload \uparrow \rightarrow afterload tension and pressure \uparrow

CARDIAC CONTRACTILITY

osms.it/cardiac-contractility

- Negative inotropes: ↓ force of myocardial contraction
- Proportional to Ca²⁺ concentration
 - $\hfill{$ Proportional to Ca^2+ released
 - Depends on storage, current size

WHAT AFFECTS INOTROPISM? -AUTONOMIC NERVOUS SYSTEM

Sympathetic

- Causes faster relaxation, faster refill, increased heart rate (HR)
- Increased tension development rate
 - **61** receptor is G_s coupled, activates adenylyl cyclase \rightarrow cAMP produced
 - pKA activated → phosphorylation → \uparrow sarcolemmal Ca²⁺ channel activity → \uparrow contraction
 - Phospholamban phosphorylation; stops sarcoplasmic Ca²⁺ ATPase inhibition, decreasing time of IC Ca²⁺, making HR

faster, systole shorter; Frank–Starling effective

- Na⁺/K⁺ ATPase phosphorylation; increases relaxation due to secondary channel activations
- Troponin I phosphorylation; Ca^{2+} binds less troponin $C \rightarrow$ effect on excitation contraction coupling, prolongs filling, higher ejection fraction

Parasympathetic

- Negative inotropic effects:
 ↓ contractility on atria via muscarinic receptors
- Acidosis also has negative inotropic effect
 → ↓ contractility
- G_k (type of G_i), adenylyl cyclase couple, resulting in
 - Decreased Ca²⁺ plateau current
 - ACh increases I_{kACh}
- Phosphodiesterase metabolises cAMP, inhibit phosphodiesterase, increase contractility IP3 stimulates Ca release in SR, increases force of contraction

Heart rate (HR)

- HR increases contractility
- Diastole affected more than systole
- Ca can't be removed as quickly as it accumulates → new equilibrium
 - ↑ action potentials/time: increased total trigger Ca²⁺, increased inward current
 - \uparrow Ca²⁺ influx → \uparrow stores; phospholamban phosphorylated, thus inhibited
- Positive staircase effect/Bowditch staircase/Treppe phenomenon
 - On first, beat still no extra Ca²⁺
 - Afterward, Ca²⁺ accumulates until max Ca²⁺ storage achieved
- Postextrasystolic potentiation
 - Same effect as positive staircase
 - Extrasystole < powerful, but creates one more chance for calcium entry
 - Because the voltage channels are open more, postextrasystolic beat has higher tension than extrasystolic

WHAT AFFECTS INOTROPISM? - DRUGS

Cardiac glycosides

- Digoxin, digitoxin, ouabain; congestive heart failure treatment
 - Inhibit Na⁺/K⁺ ATPase; + inotropic, ↑
 intracellular Na⁺ changes Na/Ca →
 decreases exchange → intracellular
 calcium increases → increases tension
 - Nifedipine also acts on Ca²⁺ by blocking ryanodine receptors

Beta adrenergics

- Isoproterenol, norepinephrine, epinephrine, dopamine, dobutamine
 - $^{\circ}\uparrow \mathsf{cAMP} \to \uparrow \text{ contractility}$