

NOTES NORMAL VARIATIONS

 Physiological adaptations within cardiovascular system in response to changes such as hemorrhage, exercise, postural changes

CARDIOVASCULAR CHANGES DURING EXERCISE

osms.it/cardiovascular-changes-exercise

- Involves central nervous system (CNS), local mechanisms
 - CNS responses: changes in autonomic nervous system (ANS) due to inputs from cerebral motor cortex
 - □ Local responses: exercise causes ↑ blood flow, O₂ delivery to skeletal muscles
- Exercise results in ↑ sympathetic (ß1 receptors), \(\) parasympathetic activity to heart → ↑ cardiac output due to ↑ heart rate + ↑ stroke volume
- Muscle changes also occur
 - ↑ metabolites (lactate, potassium, adenosine) are produced → metabolites stimulate local vasodilation $\rightarrow \uparrow$ blood flow $\rightarrow \downarrow$ overall total peripheral resistance (TPR)

OVERALL RESPONSE TO EXERCISE

- Central command: ↑ cardiac output (CO). vasoconstriction in some vascular beds (excludes exercising skeletal muscle, cerebral, coronary circulations)
 - ↑ CO → ↑ heart rate, contractility
 - \neg ↑ contractility \rightarrow ↑ stroke volume \rightarrow ↑ pulse pressure
 - ↑ CO due to ↑ venous return (sympathetic vein constriction, squeezing action of skeletal muscle on veins)

CV RESPONSES TO **EXERCISE OVERVIEW**

	RESPONSE
HEART RATE	↑ ↑
STROKE VOLUME	↑
PULSE PRESSURE	† (increased stroke volume)
CARDIAC OUTPUT	↑ ↑
VENOUS RETURN	1
MEAN ARTERIAL PRESSURE	↑ (slight)
TPR	$\downarrow\downarrow$
ARTERIOVENOUS 02 DIFFERENCE	↑↑ (increased tissue O₂ composition)

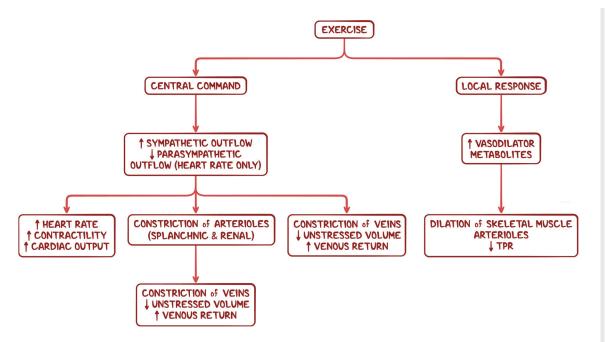


Figure 20.1 Flowchart showing cardiovascular response to exercise.

CARDIOVASCULAR CHANGES DURING HEMORRHAGE

osms.it/cardiovascular-changes-hemorrhage

- Blood loss → ↓ arterial pressure → compensatory responses to restore arterial pressure
 - Response mediated by baroreceptor reflex, renin-angiotensin-aldosterone system (RAAS), vascular actions

Decrease in arterial pressure

 Hemorrhage → ↓ total blood volume → pressure $\rightarrow \downarrow$ cardiac output $\rightarrow \downarrow P_a$ as a product of cardiac output, TPR

Return of arterial pressure

- Baroreceptors in carotid sinus detect \(\mathbb{P} \) → relay information to medulla via carotid sinus nerve → ↑ sympathetic outflow to heart, blood vessels; \parasympathetic outflow to heart $\rightarrow \uparrow$ heart rate, \uparrow contractility, † TPR, constriction of veins
- ↓ mean arterial pressure → ↓ perfusion to kidney → response via RAAS

- Kidney secretes renin from renal juxtaglomerular cells → ↑ angiotensin l production → converted to angiotensin II (causes arteriolar vasoconstriction, stimulates aldosterone secretion)
- Capillary changes favor fluid reabsorption
 - □ ↑ sympathetic outflow to blood vessels, angiotensin $II \rightarrow arteriolar$ vasoconstriction → ↓ capillary hydrostatic pressure (P₂)→ restricts filtration out of capillaries, favors absorption

OTHER RESPONSES IN HEMORRHAGE

- Hypoxemia (↓ arterial P₀₂): carotid, aortic bodies chemoreceptors sense $\downarrow P_{02} \rightarrow \uparrow$ sympathetic outflow to blood vessels $\rightarrow \uparrow$ vasoconstriction, TPR, Pa
- Cerebral ischemia: local ↑ P_{CO2}

• \downarrow blood volume $\rightarrow \downarrow$ return of blood to heart $\stackrel{\cdot}{\rightarrow}$ detection by atria volume receptors → ADH secretion to maintain adequate blood pressure \rightarrow water reabsorption by renal collecting ducts \rightarrow arteriolar vasoconstriction

CV RESPONSES TO HEMORRHAGE OVERVIEW		
HEMOKKHA	RESPONSE	
CAROTID SINUS NERVE FINDING RATE	↓	
HEART RATE	1	
CONTRACTILITY	1	
CARDIAC OUTPUT	1	
UNSTRESSED VOLUME	↓ (produces increased venous return)	
TPR	1	
RENIN	1	
ANGIOTENSIN II	1	
ALDOSTERONE	↑	
CIRCULATING EPINEPHRINE	† (secreted from adrenal medulla)	
ANTIDIURETIC HORMONE (ADH)	↑ (stimulated by decreased blood volume)	

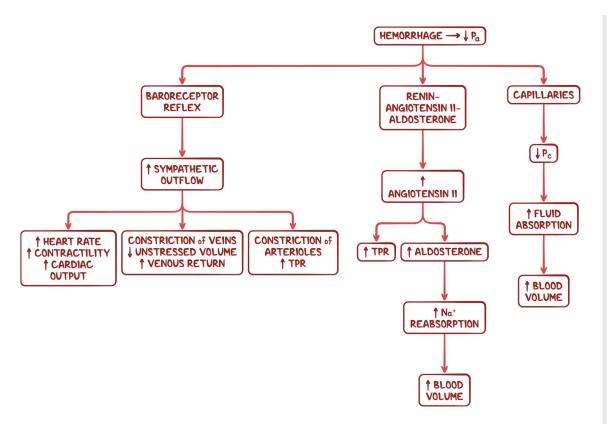


Figure 20.2 Flowchart showing cardiovascular responses to hemorrhage.

CARDIOVASCULAR CHANGES DURING POSTURAL CHANGE

osms.it/cardiovascular-changes-postural

- Standing up quickly → lightheadedness, sometimes fainting (due to delayed constriction of lower extremity blood vessels → orthostatic hypotension)
 - □ ↓ in systolic blood pressure > 20mmHg/ diastolic blood pressure > 10mmHg within three minutes of standing
- Initiating event: pooling of blood in extremities
 - Moving from supine to standing position: blood pools in veins of lower extremities $\rightarrow \downarrow$ venous return to heart, \downarrow cardiac output $\rightarrow \downarrow$ mean arterial pressure
 - □ Venous pooling → ↑ hydrostatic pressure in leg veins → ↑ fluid filtration

- into interstitial fluid, \(\) intravascular volume
- □ Severe ↓ blood pressure → syncope

Response of baroreceptor reflex

- Responsible for homeostatic blood pressure maintenance
- Carotid sinus baroreceptors detect ↓ P₃ → sends information to medullary vasomotor center → inactivates medulla vagal neurons, activates sympathetic neurons → ↑ sympathetic outflow to heart, blood vessels, ↓ parasympathetic outflow to heart to normalize P_a
- † systemic vascular resistance, cardiac output act in negative feedback mechanism to maintain P

CV RESPONSE TO STANDING			
	INITIAL RESPONSE	COMPENSATORY RESPONSE	
MEAN ARTERIAL PRESSURE	↓	↑ (toward normal)	
HEART RATE	-	↑	
STROKE VOLUME	↓ (decreased venous return)	↑ (toward normal)	
CARDIAC OUTPUT	↓ (decreased stroke volume)	↑ (toward normal)	
TPR	-	↑	
CENTRAL VENOUS PRESSURE	↓ (pooling of blood in lower extremities)	↑ (toward normal)	

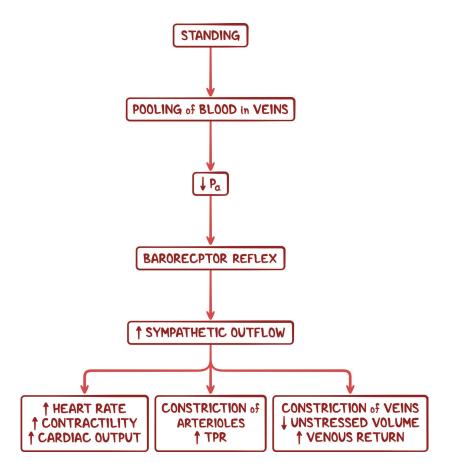


Figure 20.3 Flowchart showing cardiovascular response to postural change.