NOTES SPECIFIC CIRCULATIONS

CEREBRAL CIRCULATION

osms.it/cerebral-circulation

- Cerebral circulation: managed almost entirely by local (intrinsic) control (autoregulation; active, reactive hyperemia)
 - ↑ pCO₂ (↑H⁺, ↓pH) → arteriolar
 vasodilation → ↑ blood flow → CO₂
 removal (most vasoactive metabolites
 too big to cross blood-brain barrier →
 do not affect cerebral tissue
 - Hyperventilation works by same mechanism → ↓ pCO₂ → vasoconstriction (used to reduce swelling in situations of cerebral edema)

CEREBRAL BLOOD SUPPLY SEGMENTATION

- Cerebral blood supply separated into anterior, posterior segments
- Anterior, posterior circulatory segments join via arterial posterior communicating arteries, form circle of Willis
 - Back-up circulation in case of blood vessel occlusion

Anterior segment

- Supplied by internal carotid arteries
- Enter skull in carotid canal, branch out
 - Ophthalmic arteries: supply eyes, orbits, forehead, nose
 - Anterior cerebral artery: medial part of frontal, parietal lobes; anastomoses with counterpart via anterior communicating artery (part of circle of Willis)
 - Middle cerebral artery: supplies lateral sides of temporal, parietal, frontal lobes

Posterior segment

- Supplied by vertebral arteries
- Enter skull through foramen magnum, branch out
 - Right, left vertebral arteries fuse in skull → basilar artery which supplies brainstem, cerebellum, pons
 - Posterior cerebral arteries: supply occipital lobes, inferior parts of temporal lobes

CORONARY CIRCULATION

osms.it/coronary-circulation

- Coronary arteries: blood vessels delivering oxygenated blood to heart (myocardium)
- Cardiac veins: blood vessels retrieving deoxygenated blood from heart

CORONARY ARTERIES

• Two coronary arteries emerge from base of aorta, surround heart in coronary sulcus

Left coronary artery

- Two branches; supplies left atrium, left ventricle, interventricular septum
 - Circumflex artery: supplies left atrium, posterior wall of left ventricle
 - Anterior interventricular artery: supplies interventricular septum, anterior walls of ventricles

Right coronary artery

- Two branches; supplies right atrium, right ventricle, part of left ventricle, electrical conduction system
 - **Right marginal artery**: supplies lateral right side of heart, superficial parts of ventricle
 - Posterior interventricular artery: supplies interventricular septum, posterior walls of ventricles

CORONARY CIRCULATION CONTROL

- Coronary circulation managed primarily by local (intrinsic) control, secondarily by sympathetic nervous system
- \uparrow oxygen demand \rightarrow \uparrow blood flow
- Active hyperemia via local (intrinsic) control triggers
 - Hypoxia → build-up of metabolites
 ADP, AMP → degraded to adenosine
 (potent vasodilator) → binds to coronary
 vascular smooth muscle → ↓ calcium
 influx into cells → vasodilation → ↑
 blood flow, oxygen delivery
- Other intrinsic control of vascular tone provided by endothelial factors
 - Endothelium-derived nitric oxide: relaxes arterial smooth muscle
 - Prostacyclin: vasodilator
 - Endothelium-derived hyperpolarizing factor (EDHF): vasodilator
 - Endothelin 1: vasoconstrictor
- Reactive hyperemia
 - Brief arterial occlusion period during systole $\rightarrow \downarrow$ blood flow $\rightarrow \uparrow O_2$ debt \rightarrow vasodilation during diastole $\rightarrow \uparrow$ blood flow $\rightarrow O_2$ demands are met

CONTROL OF BLOOD FLOW CIRCULATION

osms.it/blood-flow

- Blood flow regulation
 - Intrinsic (local): humoral, myogenic control
 - Extrinsic (systemic): hormonal, neural

LOCAL (INTRINSIC) BLOOD FLOW CONTROL

Mechanisms

- Humoral: mediated by vasoactive substances
 - Histamine, nitric oxide (arteriole dilation)
 - Endothelin, serotonin
- Autoregulation: maintains constant blood flow via direct control of arterial resistance
 - Present in organs such as kidneys, brain, heart, skeletal muscle (e.g. ↓ coronary artery pressure → compensatory arteriole vasodilation → ↓ vessel resistance → constant blood flow)
- Active hyperemia:
 blood flow directed to organ/tissue associated with
 metabolic activity (e.g.
 blood flow in active skeletal muscle)
- Reactive hyperemia: temporary \uparrow blood flow following ischemia (\downarrow blood flow) in organ (e.g. arterial occlusion $\rightarrow \downarrow$ blood flow $\rightarrow \uparrow O_2$ debt \rightarrow vasodilation, \uparrow blood flow)
- Myogenic hypothesis for autoregulation
 - Focus on arteriolar resistance: vascular smooth muscle contracts upon stretching (
 wall tension) and vice versa
 - ↑ blood flow → arteriole stretching → contraction → ↑ resistance → constant blood flow
 - ↓ blood flow → ↓ arteriole stretching → relaxation → ↓ resistance → constant blood flow
 - Explained by law of Laplace: \uparrow pressure (P) + \downarrow radius (r) \rightarrow tension (T) remains constant (T=P × r)

- Metabolic hypothesis for autoregulation, active, reactive hyperemia
 - O₂ distribution changes in response to O₂ consumption via altering arteriolar resistance
 - ↑ metabolism → ↑ vasodilating metabolites (CO₂, H⁺, K⁺, lactate, adenosine) → arteriole vasodilation → ↓ resistance → ↑ blood flow, O₂ distribution
 - Certain tissues more susceptible to certain metabolites (coronary circulation—PO₂, adenosine; cerebral circulation—PCO₂)

NEURAL & HORMONAL (EXTRINSIC) CONTROL

- Neural: sympathetic nervous system acts on vascular smooth muscle
 - a1: vasoconstriction \rightarrow skin, intestines
 - β 2: vasodilation \rightarrow lungs, skeletal muscles
- Hormonal: vasopressin released from anterior pituitary → vasoconstriction

MICROCIRCULATION & STARLING FORCES

osms.it/microcirculation-starling-forces

• Microcirculation: vascular network involving capillaries, lymphatic vessels

Capillaries

- Vessels: thin walls lined with endothelial cells
- Arterioles → metarterioles → capillaries → venules → veins
 - Metarterioles end in precapillary sphincters → smooth muscle ring controls blood flow/capillary exchange rate by constricting/relaxing
 - Capillary blood flow regulated by intrinsic (local), extrinsic (systemic) control

CAPILLARY EXCHANGE

- Capillaries: exchange sites for nutrients, waste, fluids between interstitial, vascular space
 - Afferent blood: capillaries \rightarrow interstitial space \rightarrow tissue
 - Efferent blood: tissue \rightarrow interstitial space \rightarrow capillaries

Capillary exchange types

- Simple diffusion: substance exchange through lipid bilayer/between capillary wall's epithelial cells
 - Depends on driving force (partial pressure gradient), available diffusion area
 - Driving force: substances move across their own partial pressure gradient (towards \$\phi\$ concentration area)
 - \circ Lipid soluble substances (O $_{\rm 2},$ CO $_{\rm 2}) pass through lipid bilayer$
 - Water soluble substances (ions, glucose, amino acids) pass between endothelial cells through fluid-filled intercellular clefts/fenestrations

- Vesicular transport: large molecule exchange (proteins) via pinocytic vesicles (caveolae)
 - In some tissues (kidney, intestine) proteins pass through capillary fenestrations
- Osmosis: if capillary wall has aqueous pores, pressure gradient across membrane, driven by Starling forces

STARLING FORCES

- Capillary filtration/absorption depend on Starling forces: hydrostatic, colloid osmotic (oncotic) pressure
 - Filtration: fluid movement from capillaries → interstitium
 - Absorption: fluid movement from interstitium → capillaries

Hydrostatic pressure

- Pressure exerted by fluid against capillary wall
- Capillary hydrostatic pressure (P_)
 - Favors filtration: tends to move fluid out of capillaries
 - Blood pressure ↓ throughout capillary beds → arterial (37mmHg) > venous (17mmHg) pressure
- Interstitial fluid hydrostatic pressure (P_i)
 - Opposes filtration: pressure exerted outside capillary wall
 - Tends to move fluid into capillary
 - \circ Contains very little fluid \rightarrow $\rm P_{i}$ considered zero, slightly positive/slightly negative (1mmHg)

Colloid osmotic pressure (oncotic pressure)

- Pressure gradient: large non-diffusible molecules (e.g. plasma proteins)
 - Capillary oncotic pressure (π_c) (25mmHg): created by plasma proteins (primarily albumin; reflection coefficient = 1.0); opposes filtration

• Interstitial oncotic pressure (π_i)

(0mmHg): contains very little protein; favors filtration

Flow direction

Arterial end of capillary

 Blood pressure's outward driving force > inwardly directed oncotic pressure force
 → fluid moves out of vessel

- Venous end of capillary
 - Oncotic pressure inward driving force > outwardly directed hydrostatic pressure
 → fluid moves into vessel
- Most fluid leaving capillary at arterial end reenters capillary before leaving venous end
- Fluid remaining in interstitial space recovered by lymphatic vessels
- Fluid movement through capillary wall is dependent on Starling force

Starling equation

- $J_v = K_f [(P_c P_i) (\pi_c \pi_i)]$
 - J_v = fluid movement (mL/min)
 - K_f = hydraulic conductance (wall to water permeability; depends on tissue, wall structure—e.g. fenestrated, nonfenestrated)

LYMPH

- Lymphatic capillaries drain excess fluid + some proteins from interstitial space into venous system
 - Lymphatic capillaries → lymphatic
 vessels → thoracic duct/right lymphatic
 duct → subclavian vein
 - \circ One way values \rightarrow unidirectional flow

Edema

- Abnormal buildup of fluid in interstitial space
- Causes
 - Imbalance of Starling forces
 - hydrostatic capillary pressure (
 volume—e.g. heart failure; obstruction;
 e.g. thrombosis)
 - ↓ oncotic capillary pressure (↓ plasma protein —e.g. liver failure, malnourishment, nephrotic syndrome
 - ↑ capillary permeability (burns/ inflammation)
 - Impaired drainage (immobility; lack of/ irradiated lymphatic nodes; parasitic infections of lymphatic nodes—e.g. filariasis)