

NOTES GONADAL DYSFUNCTION

GENERALLY, WHAT IS IT?

PATHOLOGY & CAUSES

 Disturbance in gonadal development/ function due to gonadal disorder/ hypothalamic-gonadal axis dysfunction

CAUSES

- Impaired gonadal hormone production due to enzyme deficiency/receptor disturbance/ exogenous hormone use
- Hypogonadotropic hypogonadism (AKA central/secondary hypogonadism)
 - Deficient gonadal hormone production due to decreased gonadotropin production
 - Gonadotropins, gonadal hormone levels low
- Hypergonadotropic hypogonadism (AKA peripheral/primary hypogonadism)
 - Deficient gonadal hormone production due to disease of gonads
 - Gonadotropin levels high, gondal hormone levels low

RISK FACTORS

- Genetic (autosomal dominant disease), history (gestational diabetes)
- Environment (e.g. obesity, lack of physical exercise, steroid use)

COMPLICATIONS

Most commonly leads to infertility

SIGNS & SYMPTOMS

- Individuals who are biologically male
 - Primary sex characteristic dysfunction: small penis, testes; improper testicular descent; low sperm count
 - Secondary sex characteristic dysfunction: lack of facial, body hair; low muscle mass; failure of voice mutation
- Individuals who are biologically female
 - Primary sex characteristic dysfunction: amenorrhea (absence of menstruation), oligomenorrhea (irregular menstrual cycle)
 - Secondary sex characteristic dysfunction: lack of breast development, pubic hair

DIAGNOSIS

LAB RESULTS

- Blood tests
 - Gonadotropic, gonadal hormone levels

OTHER DIAGNOSTICS

- Tanner scale
 - Identify delayed development
 - Development of primary, secondary sex characteristics divided into five stages based on pubic hair, testicular volume, breast development

TREATMENT

OTHER INTERVENTIONS

- Hormone replacement therapy
- Infertility treatments

5-ALPHA-REDUCTASE DEFICIENCY

osms.it/5-alpha-reductase_deficiency

PATHOLOGY & CAUSES

- Autosomal recessive sex-limited genetic mutation in SRD5A2 gene (encodes enzyme 5 alpha reductase)
- Defective/absent
- Affects only individuals who are biologically male
- Defective 5 alpha reductase → ↓ testosterone to dihydrotestosterone conversion → impaired secondary sexual characteristics development

COMPLICATIONS

 Infertility; inflammation, infection of gonads due to malformation

SIGNS & SYMPTOMS

Pre-puberty

- Male internal sex organs present, external genitalia with female appearance
 - Phallus doesn't fully elongate; resembles something between clitoris, penis
 - Bifid scrotum: scrotum remains split
 - Hypospadias: urethral opening remains on underside of penis
 - Ambiguous genitalia: external genitalia does not look clearly male/female

Puberty

 ↑ testosterone → despite no testosterone conversion, phallus, scrotum grow larger → male appearance, deepening of voice, muscle growth, development of facial, body hair

DIAGNOSIS

LAB RESULTS

- Genetic testing
 - Karyotyping to ensure individual genetically male; confirm enzyme deficiency
- Normal serum testosterone level, ↓ dihydrotestosterone levels, ↑ testosterone to dihydrotestosterone ratio

OTHER DIAGNOSTICS

Suspected in newborns with ambiguous genitalia

TREATMENT

MEDICATIONS

- Hormone replacement therapy
 - Male/female sex hormones according to gender role adopted by individual

SURGERY

• Surgical procedures to help restore external genitalia to nonambiguous appearance

OTHER INTERVENTIONS

- Assisted reproduction techniques
 - Internal genitalia do not produce ova, may produce sperm

ANDROGEN INSENSITIVITY SYNDROME

osms.it/androgen-insensitivity

PATHOLOGY & CAUSES

- Genetic disorder of defective androgen receptor gene
- Person with XY genotype unresponsive to androgens
- Inherited in X-linked recessive pattern

TYPES

- Complete androgen insensitivity
 - Completely nonfunctional receptor; cells do not respond to androgens at all
- Partial androgen insensitivity
 - Some remaining function of androgen receptor; cells, tissues partially sensitive to androgens
- Mild androgen insensitivity
 - Masculinization of external genitalia

CAUSES

• Defect in androgen receptor on external genitalia, genital ducts, testes itself

COMPLICATIONS

- Infertility (most cases)
- Risk of testicular cancer due to cryptorchidism in complete androgen insensitivity

SIGNS & SYMPTOMS

Complete androgen insensitivity

- Cryptorchidism
 - Without effects of androgens, testes fail to descend into scrotum, remain in abdomen/pelvis
- Ineffective spermatogenesis
 - Epididymis, vas deferens, seminal vesicles do not develop normally

- Development of female secondary sex characteristics
 - Excess testosterone converted into estrogen → breast growth, widening of hips, female fat distribution
- Failed development of internal female organs
 - Testes still produce anti-Müllerian hormone → uterus, fallopian tubes do not develop, vagina ends in blind pouch → female appearance without menstrual cycles

Partial androgen insensitivity

• Appearance of external genitalia, secondary sex characteristics varies widely

Mild androgen insensitivity

• Masculinization of external genitalia, some female secondary sex characteristics

DIAGNOSIS

DIAGNOSTIC IMAGING

Ultrasound

Absence of uterus, ovaries; cryptorchidism

LAB RESULTS

- Genetic testing
 - Karyotype; visualize sex chromosomes, ensure individual genetically male

OTHER DIAGNOSTICS

- Diagnosed in infants with cryptorchidism
- Can remain undiagnosed until puberty

TREATMENT

MEDICATIONS

- Hormone replacement therapy
 - Male/female sex hormones according to gender role adopted by individual; testosterone/dihydrotestosterone if male, estrogen if female

SURGERY

- Surgical removal of testes (esp. in cryptorchidism) to reduce cancer risk
- External genitalia correction

DELAYED PUBERTY

osms.it/delayed-puberty

PATHOLOGY & CAUSES

• Onset of puberty after age 13 in individuals who are biologically female, after 14 in individuals who are biologically male

TYPES

Primary/hypergonadotropic hypogonadism

- Dysfunction of gonads due to unresponsiveness to luteinizing hormone (LH), follicle-stimulating hormone (FSH)/lack of testosterone/estrogen, progesterone production in gonads → no negative feedback on hypothalamus → overproduction of LH, FSH
- Causes of acquired
 - Radiation therapy, chemotherapy, trauma to gonads
- Causes of congenital
 - Klinefelter syndrome: two X chromosomes in individuals who are biologically male → small testes, sterility
 - Turner syndrome: X chromosome missing in individuals who are biologically female → dependence on hormonal treatment to develop secondary sex characteristics

Secondary/ hypogonadotropic hypogonadism

 Hypothalamus/pituitary gland dysfunction; inability to produce gonadotropin-releasing hormone (GnRH)/LH, FSH; suppression from other hormones (e.g. prolactin, thyroid hormone)

- Causes of acquired
 - Radiation therapy, chemotherapy, trauma to gonads, tumor of pituitary gland, hypothalamus
- Causes of congenital
 - Kallmann syndrome, panhypopituitarism
- General causes
 - Chronic illness (e.g. cystic fibrosis, celiac disease), excessive exercise, malnutrition/obesity, stress; affect hypothalamus, pituitary release of hormones

Constitutional delay

- Temporary delay in puberty; doesn't typically result in infertility
- Lack of GnRH, not pathologic \rightarrow naturally slowed rate of maturation
- Onset of puberty occurs naturally, at later age; typically genetic component

COMPLICATIONS

 Permanent infertility if puberty never begins/fails to complete, sexual maturity never reached

 Delayed primary, secondary sexual characteristics

DIAGNOSIS

LAB RESULTS

- Blood hormone levels
 - Indicate type of hypogonadism; ↓ testosterone, estrogen in low gonad activity; ↓ FSH, LH in suppressed pituitary activity

OTHER DIAGNOSTICS

- Medical history
 - Evaluate underlying medical conditions, family history for constitutional delay
- Tanner scale
 - Estimates puberty development

TREATMENT

MEDICATIONS

Hormone replacement therapy

OTHER INTERVENTIONS

- Constitutional delay can resolve on own with natural onset of puberty
- Infertility treatments

KALLMANN SYNDROME

osms.it/kallmann-syndrome

PATHOLOGY & CAUSES

- Type of hypogonadotropic hypogonadism; delayed/absent puberty with impaired sense of smell (anosmia)
- Pituitary failure → ↓ sex hormones → hypogonadotropic hypogonadism → failure to start/complete puberty
- Defect in migration of neurons from olfactory placode
 - Olfactory neurons: hyposmia/anosmia (reduced sense of smell)
 - ${}^{_{\rm O}} \text{ GnRH neurons:} \downarrow \text{GnRH} \rightarrow \downarrow \text{LH, FSH}$

COMPLICATIONS

Infertility, osteopenia, osteoporosis

SIGNS & SYMPTOMS

- Underdevelopment of primary, secondary sex characteristics; anosmia; long arms in proportion to body (eunuchoid body); osteoporosis; kidney agenesis
- Skeletal
 - Scoliosis, short middle finger, split hand/

foot, teeth underdevelopment, cleft palate

- Neurological sensory, motor
 - Hearing impairment, colour blindness, dyskinesias, cerebral ataxia

DIAGNOSIS

LAB RESULTS

- Genetic tests
 - Gene mutation in FGFR1, PROKR2, PROK2, CHD7, FGF8; associated with Kallmann syndrome

OTHER DIAGNOSTICS

Smell test, sperm count

TREATMENT

MEDICATIONS

- Hormone therapy
 - Stimulate puberty, development of secondary sex characteristics
- Calcium, vitamin D
 Osteopenia

OTHER INTERVENTIONS

Infertility treatments

POLYCYSTIC OVARY SYNDROME

osms.it/polycystic-ovary

PATHOLOGY & CAUSES

 Excessive androgen production by ovaries; primarily testosterone

CAUSES

Hyperinsulinemia

- Aids LH overproduction
- Theca cells in ovary express insulin receptors → excess insulin induces growth, division of theca cells → ↑ LH receptors → hypothalamus ↑ rate of GnRH pulses → ↑ LH secretion

Anterior pituitary produces excessive LH

 Theca cells produce excess amounts of androstenedione → converted into estrone by aromatase in adipose tissue → negative feedback signal → blocks anterior pituitary from releasing FSH, LH → no LH surge → no dominant follicle to break away from ovary → remains in ovary as cyst/ degenerates with other follicles → no ovulation

Excessive adipose tissue

 Aromatase in adipose tissue converts androgens to estrogens → ↑ androgens

RISK FACTORS

- Genetic: autosomal dominant disease
- Obesity, lack of physical exercise
- History of gestational diabetes

COMPLICATIONS

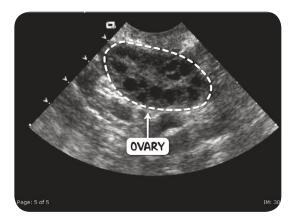
• Diabetes mellitus, hyperinsulinemia, infertility, increased risk of endometrial cancer

SIGNS & SYMPTOMS

- High levels of androstenedione \rightarrow virilization
 - Excessive hair growth on chin, upper lip, chest, back (hirsutism)
 - Thinning of hair, from crown of head (male-pattern baldness)
 - Acne on face, chest, back
 - Lack of ovulation \rightarrow oligomenorrhea, amenorrhea \rightarrow infertility
- Insulin resistance
 - Overweight/obese; dark, velvety patches in creases of neck, groin, underarms (acanthosis nigricans)

DIAGNOSIS

DIAGNOSTIC IMAGING


Ultrasound

 Follicles on one/both ovaries, appear like small cysts

LAB RESULTS

Blood tests

 $^{\rm o}$ \uparrow LH to FSH ratio; \uparrow and rostenedione

Figure 16.1 An abdominal ultrasound scan demonstrating a polycystic ovary. The cysts are are represented by the well circumscribed hypoechoic areas within the ovary.

OTHER DIAGNOSTICS

- Rotterdam criteria (2 of 3)
 - Lack of ovulation, excessive androgens, polycystic ovaries on ultrasound
- Oral glucose tolerance test (OGTT)
 - Establish insulin resistance

TREATMENT

MEDICATIONS

- Oral contraceptives
 - Regulate menstrual cycle
- Clomiphene citrate
- Induce ovulationMetformin
 - Increase insulin sensitivity

SURGERY

- Ovarian drilling
 - Puncturing cystic ovary; induces ovulation; can damage ovary, doesn't resolve overall hormonal imbalance

OTHER INTERVENTIONS

- Incurable condition, treatment symptoms
- Weight loss, low glycemic index diet reduces insulin resistance, improves symptoms

PRECOCIOUS PUBERTY

osms.it/precocious-puberty

PATHOLOGY & CAUSES

- Onset of puberty at earlier age than average
 - ≤ eight in individuals who are biologically female, ≤ nine in individuals who are biologically male

TYPES

Central/gonadotropin-dependent precocious puberty

- Early maturation of hypothalamic-pituitarygonadal axis → early release of LH, FSH → ↑ sex hormones
- Cause
 - Dysfunctional hypothalamus/pituitary gland: tumor releases GnRH/human

chorionic gonadotropin (hCG); infection; cyst; radiation damage to brain \rightarrow impairs negative feedback system in hypothalamic-pituitary-gonadal axis

 Idiopathic precocious puberty: most common; normal variation; depends on weight, genetics

Peripheral/gonadotropin-independent precocious puberty

- Abnormal overproduction of sex hormones by testes/ovaries
- Cause
 - Ovarian/testicular cyst/tumor; genetic conditions (e.g. McCune–Albright syndrome); dysfunction of other glands (thyroid/adrenal gland); exogenous sex hormones from medications, creams

SIGNS & SYMPTOMS

- Child starts progressing through Tanner scale before 95% of other children at same age
- Early sexual maturation

DIAGNOSIS

DIAGNOSTIC IMAGING

MRI

Structural abnormalities in brain

Ultrasound

Screening of gonads

X-ray

Estimates bone maturation

LAB RESULTS

- Gonadotropin hormone levels
 - Distinguish gonadotropin-dependent/ independent causes

OTHER DIAGNOSTICS

- Physical exam
 - Assess growth compared to age; Tanner scale

TREATMENT

MEDICATION

- Hormone therapy
 - GnRH analogues → suppress hypothalamic-pituitary-gonadal axis hormones, bind to GnRH receptor on pituitary gland → decrease release of LH, FSH → slow puberty

SURGERY

 Surgical removal of tumor/cyst from ovaries/ testicles

PREMATURE OVARIAN FAILURE

osms.it/premature-ovarian-failure

PATHOLOGY & CAUSES

- AKA primary ovarian insufficiency
- Loss of function of ovaries before age 40; not caused by menopause
- Follicles stop responding to pituitary LH, FSH → disrupted ovulation → ↓ estrogen, progesterone, androstenedione → amenorrhea, hypogonadotropism, hypoestrogenism
- Around half of biologically-female individuals maintain some intermittent ovarian function
- Usually no clear cause; associated with
 - Acquired: chemotherapy, radiotherapy, autoimmune destruction
 - Genetic: Turner syndrome, fragile X syndrome, BRCA1 mutations \rightarrow

gonadal dysgenesis

- Two mechanisms
 - No remaining follicles: ovary started off with few/rapid degeneration
 - Follicles dysfunctional: hypergonadotropic hypogonadism; estrogen-low pituitary increases LH, FSH production

COMPLICATIONS

 Infertility, cardiovascular disease, osteoporosis, hypothyroidism, Addison's disease

SIGNS & SYMPTOMS

- Absence of ovulation; low levels of estrogen, progesterone
- Normal puberty with regular periods before disorder develops
- Infrequent menstrual periods → difficulty conceiving/infertility
- Lack of hormones: hot flashes, night sweats, vaginal dryness → dyspareunia (pain during sex)
- ↓ estrogen: cardiovascular disease, osteoporosis, decreased bone density
- Symptoms mimic natural menopause; some biologically-female individuals still able to get pregnant due to intermittent ovarian function

DIAGNOSIS

DIAGNOSTIC IMAGING

Ultrasound

Shrunken ovaries

LAB RESULTS

- \downarrow ovarian hormones (estrogen), \uparrow LH, FSH
- If autoimmune cause suspected
 Test for steroid cell antibodies/ sulfoxythiocarbamate alkynes (STCAs)
- Genetic testing
 - Karyotype, chromosomal abnormalities; evaluate for genetic disease

TREATMENT

MEDICATIONS

- Hormone replacement therapy
 - Estrogen, progesterone

OTHER INTERVENTIONS

- In-vitro fertilization
- Treat infertility