NOTES

NOTES LOWER LIMB INJURY

GENERALLY, WHAT IS IT?

PATHOLOGY & CAUSES

TREATMENT

MEDICATIONS

Acute

Analgesics (NSAIDs)

SURGERY

Therapeutic

 Surgical intervention (depending on disability, desire to return to sport/ demanding activity)

OTHER INTERVENTIONS

Acute

• Rest, ice

Injury to ligaments, tendons, bony structures of lower extremities

CAUSES

Trauma, sport

SIGNS & SYMPTOMS

• Pain, swelling in affected region/joint

DIAGNOSIS

DIAGNOSTIC IMAGING

Imaging to confirm

OTHER DIAGNOSTICS

- History: traumatic event, risk factors review
- Physical examination: especially provocative (eponymous) musculoskeletal joint evaluation

ACHILLES TENDON RUPTURE

osms.it/achilles-tendon-rupture

PATHOLOGY & CAUSES

- Acute, complete disruption of achilles tendon
 - Commonly traumatic, but can be iatrogenic

CAUSES

- Recreational Sports: > 80% of achilles tendon ruptures
 - Increased activity, shear stress on achilles, direct trauma to tendon
 - Sudden, forced dorsiflexion of ankle outside normal range of motion

RISK FACTORS

- Age: 30-40 years old
- Biologically-male individuals
- Obesity
- Fluoroquinolone use: unknown mechanism
- Systemic corticosteroid use

COMPLICATIONS

• **Re-injury:** 10% of individuals with rupture have history of previous rupture

SIGNS & SYMPTOMS

- Ankle pain
- Poor ambulation

DIAGNOSIS

OTHER DIAGNOSTICS

Physical inspection

- History: sudden, painful pop in lower leg; inability to walk; pain immediately after injury
- Calf muscles
 - Soft, lumped together toward knee

Proximal achilles
 Likewise collected proximally

Physical examination maneuvers

- Calf squeeze test (Simmonds/Thompson test)
 - Squeezing calf of affected leg does not elicit plantar flexion (very high sensitivity, specificity)
- Palpable gap test
 - Posterior leg palpation at level of achilles to palpate gap in tendon
- Knee flexion test (Matles test)
 - \circ Individual is prone with knees flexed at 90° \rightarrow observe angle of ankle
 - Ruptured achilles → acute angle (unopposed dorsiflexion of foot by grativity)

Figure 115.1 A positive Simmond's test (left) in an individual with a ruptured achilles' tendon

TREATMENT

MEDICATIONS

Acute

Analgesics (NSAIDs/acetaminophen)

SURGERY

Curative

Orthopedic tendon repair

OTHER INTERVENTIONS

Acute

Rest, ice

Figure 115.2 A ruptured achilles tendon prior to surgical repair.

ANTERIOR CRUCIATE LIGAMENT INJURY

osms.it/ACL-injury

PATHOLOGY & CAUSES

• Damage/complete tear of anterior cruciate ligament (ACL) in knee; common in deceleration injuries

CAUSES

- Common mechanism: twisting knee after planting foot
 - Typically, non-contact injury
 - Common athletic injury

RISK FACTORS

- Biologically-female individuals
- Valgus knee angulation
- - Wet surfaces: rotation/shift of gravity results in slipping, rather than biomechanical injury to body

COMPLICATIONS

• Segond fracture: avulsion fracture of lateral aspect of tibial plateau; occurs in most ACL tears

SIGNS & SYMPTOMS

- Immediate pain
- May have popping sensation/sound at time of injury
- Immediate knee swelling → hemarthrosis
 Diagnostic maneuvers should be performed immediately after injury for clearest results
- Post-injury
 - Knee may "give out" when walking/ standing

DIAGNOSIS

DIAGNOSTIC IMAGING

X-ray

• Rule out fractures (nondiagnostic for ligament tears)

MRI

- Preferred modality to evaluate ligament integrity
- Very high sensitivity, specificity

Knee arthroscopy

OTHER DIAGNOSTICS

Physical inspection

- History: pivot sign (knee buckling phenomenon, especially at heel strike phase of walking cycle)
 - Tibia's ability to travel anteriorly (without intact ACL) when knee is flexed at 0–30°→ snaps back around 40°+ of flexion
 - Underlying this phenomenon: role of iliotibial band in knee extension, flexion at different degrees of knee position

Physical examination maneuvers

- Anterior drawer test
 - Supine individual: affected leg flexes 90°, foot rests on end of bed → examiner sits on foot of affected leg (to stabilize) → grasps around proximal tibia with both hands → pulls anteriorly on tibia → observes anterior movement level
 - Normal laxity: < 1cm/0.4in anterior tibial subluxation; negative test, likely intact ACL
 - ↑ Laxity: > 1cm/0.4in; positive test, likely torn ACL
- Lachman test
 - Supine individual: knee flexed around 20° → examiner flexes knee → grasps around proximal tibia with one hand while stabilizing ipsilateral thigh with other hand → pulls anteriorly on tibia → observes anterior movement level

- Similar endpoints to anterior drawer test
- Best sensitivity (85%), specificity (94%) compared to other diagnostic tests

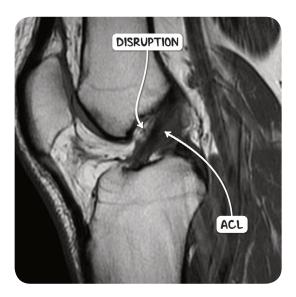
TREATMENT

MEDICATIONS

Acute

NSAIDs

SURGERY


- Complete ACL tears
- Reconstruction with neighboring patellar ligament/semitendinosus tendon
- Eligibility: severity of symptoms, individual's future athletic ambitions
- Majority of individuals elect for surgical repair
- Increased risk of osteoarthritis

OTHER INTERVENTIONS

• Rehabilitation: intensive physical therapy

Acute

Rest, ice, compression of injured knee

Figure 115.3 An MRI scan of the knee demonstrating partial disruption of the anterior cruciate ligament.

ILIOTIBIAL BAND SYNDROME

osms.it/IT-band-syndrome

PATHOLOGY & CAUSES

- Painful overuse injury: fibrous band of tissue connects muscles of proximal lower extremity to lateral tibia
- Common injury for runners

CAUSES

- Iliotibial band (ITB): involved in knee flexion (at < 30°), knee extension at terminal extension (near 0° flexion); very active in heavy activity → overuse causes inflammation
- Greatest tension across ITB occurs at 30°
 - $^\circ$ Runners: position of 30° at foot strike \rightarrow repeat \rightarrow inflammation, injury
 - Cyclists: position of 30° at down-pedal position \rightarrow repeat \rightarrow inflammation, injury

RISK FACTORS

Intrinsic

- Weak hip abductors/flexors
- Gastrocnemius, soleus inflexibilty
- Leg length discrepancy

Extrinsic

- Sudden training distance/intensity increase
- Running: overstriding, foot eversion (poorly fitted/raised shoes)
- Cold weather exercise

SIGNS & SYMPTOMS

Knee pain

- Sharp/burning, worse during exercise at knee flexion of 30°
- Beyond exercise, pain may ache more/be deeper
- Location: lateral femoral epicondyle (LPE)

DIAGNOSIS

OTHER DIAGNOSTICS

Physical inspection

• History: Running/cycling with indolent course of lateral knee pain with training

Physical examination maneuvers

- Noble compression test (examiner attempts to recreate pain experienced during training)
 - Individual lays in decubitus position with affected leg above unaffected → examiner puts one thumb proximal to LPE with pressure → examiner uses other hand to passively move affected about the knee from 0–60° flexion → pain → positive test
- Ober test
 - Individual lies on uninvolved side → flexes hip, knee 90° → knee placed in 5° flexion angle → examiner fully abducts lower extremity being tested → allows force of gravity to adduct extremity until hip cannot adduct any further
- Palpation of knee (check for no effusion)
 - Rule out meniscal injury (lateral knee pain, ⊕ effusion)

TREATMENT

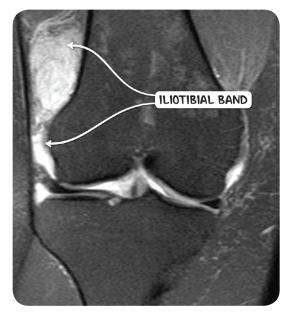
MEDICATIONS

Acute

Analgesics (NSAIDs/acetaminophen)

SURGERY

• ITB release: individuals who have failed long-term physical therapy program


OTHER INTERVENTIONS

Exercise adjustment
 Address extrinsic risk factors

- Correct leg length discrepancy with insole lift
- Physical therapy
 - Address strength of hip abduction/ flexion, calf inflexibility

Acute

Rest, ice

Figure 115.4 An MRI scan in the coronal plane of the right knee of individual complaining of iliotibial band syndrome symptoms. The band is inflammed with surrouding edema close to its point of insertion.

MENISCUS TEAR

osms.it/meniscus-tear

PATHOLOGY & CAUSES

 Injury to fibrocartilage (medial/lateral) knee pads (provide cushion, increase stability at tibiofemoral articulation interface)

CAUSES

- Pathophysiology: planted foot → twisting force at knee → compressional, rotational, shear stress placed on meniscus → tear
 - Medial meniscus tears > lateral meniscus tears
 - Medial meniscus firmly attached to medial collateral ligament (MCL) → ↓ mobility of medial meniscus → ↓ force required to tear fibrocartilage
 - Poor blood supply to meniscus via geniculate arteries → poor healing/

regenerative capability post injury

Young, healthy athletes

• Forceful, sudden, decelerating movement while changing direction

Elderly

• Chronic injury requires less torsional force at knee

RISK FACTORS

Soccer, basketball, American football

COMPLICATIONS

Osteoarthritis

SIGNS & SYMPTOMS

- Pain at time of injury
- Swelling within 24 hours
- Clicking/crepitus with walking/knee extension
- Inability to fully extend/lock knee: occurs in anterior meniscus tears > posterior meniscus tears

DIAGNOSIS

DIAGNOSTIC IMAGING

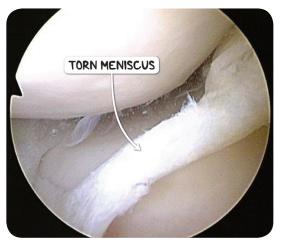
X-ray

• Non-diagnostic; commonly performed to rule out knee fracture

MRI

- Most sensitive imaging modality for detecting tears
 - Medial meniscus: very high sensitivity, specificity
 - Lateral meniscus: high sensitivity, very high specificity
- Indicated for surgical evaluation
 - Prevalence of MRI-positive meniscal tears in asymptomatic population increases with age

OTHER DIAGNOSTICS


Physical inspection

- Joint line tenderness (at tibial-femoral interface) because synovial capsule/ collateral ligament accompanies injury; less sensitive/specific finding
- Joint effusion likely present

Physical examination maneuvers

- McMurray test: tests medial, lateral meniscus
 - Individual is supine with affected knee fully flexed → examiner grasps heel with one hand, around tibial prominence with other hand → exerts rotational force while extending leg → evaluates pain/click/palpable crepitus
 - External rotation → medial meniscus moves under femoral condyle

- \circ Internal rotation \rightarrow lateral meniscus moves under femoral condyle
- Sensitivity (wide range), specificity (high–very high), ⊕ likelihood ratio (LR) (4.0), ⊝ LR (0.6)
- Apley grinding test: tests medial meniscus
 - Individual lays in prone position → examiner flexes affected knee to 90° → rotates foot laterally → while stabilizing thigh/femur (with examiner's knee), exerts downward force on tibia
 - Pain: likely medial meniscal tear
- Thessaly test: tests medial, lateral meniscus
 - Individual stands only on affected leg while holding onto examiner for stability
 → flexes knee to 20° → rotates knee, body externally/internally
 - Pain/locking/clicking: positive test
- Childress duck-waddle test: tests posterior horn of medial/lateral meniscus
 - Reserved for athletes fit to complete maneuver
 - \circ Individual squats, walks forward in squatting position \rightarrow knees are flexed fully \rightarrow waddling steps exert posterior pressure on knee
 - Pain/clicking: positive test

Figure 115.5 An arthroscopic view of a torn medial meniscus.

TREATMENT

SURGERY

- Arthroscopic/open surgery
- Meniscectomy/repair determined by amount of viable tissue intraoperatively, individual's timetable to return to sport/ activity
 - Meniscectomy: faster timetable to return to baseline activity; long-term ↑ osteoarthritis risk

OTHER INTERVENTIONS

- **Rest:** crutches for severe pain, avoidance of positions/activities that exacerbate pain
- If knee commonly gives out: patellar restraining brace; sign of poor quadriceps strength
- Physical therapy

Acute

Rest, ice

PATELLAR TENDON RUPTURE

osms.it/patellar-tendon-rupture

PATHOLOGY & CAUSES

 Sudden, forced quadriceps contraction against flexed knee, fixed foot

CAUSES

- Most common in individuals < 40 years old involved in heavy training regimens/sport
 - Landing from high jump, making sudden changes in direction at high speed
- Traumatic injury (non-athletic): foot/leg is stuck as individual falls backward
 - Body weight falls backward → large eccentric force on fixed leg → force transmitted to patellar tendon → rupture
 - \circ Knee typically fully flexed when injury occurs \rightarrow exposes tendon to most stress

RISK FACTORS

- Recent glucocorticoid injection
- Sports with explosive jumping: basketball, weightlifting
- Heavy training hours: > 20 per week
- Biologically-male individuals

COMPLICATIONS

- Tibial tuberosity avulsion fracture
- Patellar fracture/avulsion

SIGNS & SYMPTOMS

- Painful, popping sensation
- Immediate swelling
- Antalgic gait: inability to bear weight on affected leg

DIAGNOSIS

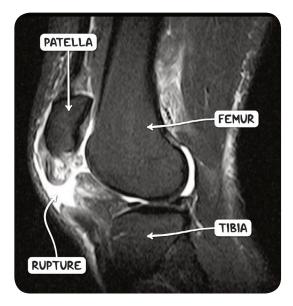
DIAGNOSTIC IMAGING

Bedside Ultrasound

Assists bedside diagnosis

X-ray

• Evaluation of patellar positioning, potential fracture/avulsion complication


MRI

 Reserved for unusual presentations: constitutional signs that raise suspicion of tumor

OTHER DIAGNOSTICS

Physical inspection

- Observation: upward shift of patella (pathognomonic); swelling distal to patella
- Strength: inability to maintain straight leg, raise leg against gravity while supine

Figure 115.6 An MRI scan of the knee in the sagittal plane demonstrating a patellar tendon rupture

TREATMENT

SURGERY

• Recommended within one week of injury for improved outcomes

OTHER INTERVENTIONS

Post-operative physical rehabilitation

PATELLOFEMORAL PAIN SYNDROME

osms.it/patellofemoral-pain-syndrome

PATHOLOGY & CAUSES

- Common overuse disorder
- Anterior knee pain that cannot be attributed to intra-articular (meniscus)/peripatellar (patellar tendinopathy) pathology

CAUSES

Multifactorial pathophysiology

Intrinsic, anatomical factors

- Leg length discrepancy
- Abnormal foot morphology
- Hamstring inflexibility
- Abnormal patellar mobility
- Hallux valgus

Extrinsic, athletic factors

Exercise overload

RISK FACTORS

- Biologically-female individuals (2:1)
- Active individuals; teens-20s
- Amount of training (ex. distance run) correlates with incidence of disease

SIGNS & SYMPTOMS

- Anterior knee pain
 - Worsened with training, knee extension, especially with squatting, running exercises
 - May occur with prolonged sitting
 - May be present for years
- Knee occasionally buckles/gives way
- Knee clicks/grinds: most evident when climbing stairs

DIAGNOSIS

OTHER DIAGNOSTICS

Physical inspection

- History
 - Absence of traumatic inciting event
 - Achy/sharp knee pain: typically below patella
- Leg length discrepancy > 1cm/0.4in → poor biomechanics when running → predisposes individual to knee injury
 - $\sim < 0.5$ cm/0.2 in leg length discrepancy is common \rightarrow no increased risk of injury

Physical examination maneuvers

- Palpation
 - Nontender patella, patellar tendon, quadriceps tendon
- Tests
 - Squatting: most individuals experience pain
 - Patellar glide with extended knee: examiner moves patella laterally
 - Lateral movement ↑ ³⁄₄ patellar width abnormal

TREATMENT

MEDICATIONS

Acute

• NSAIDs (naproxen): short-term use (2–3 weeks) recommended

OTHER INTERVENTIONS

- Lower extremity muscle strengthening
- Stretching: especially hamstrings
- Patellar bracing/taping

Acute

 Pain control: avoidance of painful exercise (stair/hill running); substitution of less stressful exercise (stationary bike exercises)

SPRAINED ANKLE

osms.it/sprained-ankle

PATHOLOGY & CAUSES

 Common ankle injury from foot hypereversion/inversion

TYPES

Lateral ankle sprain

- Most common
- Inversion of plantar-flexed foot \rightarrow stretches ankle's lateral ligament complex
- Lateral ligament: anterior talofibular ligament (ATFL), calcaneofibular ligament, posterior talofibular ligament

Medial ankle sprain

- Infrequent injury
- Eversion of foot to medial deltoid ligament complex
- Ligament strong enough that medial malleolus fracture is more common than ligament sprain

Syndesmotic sprain

- AKA high ankle sprain
- Injury to interosseous membrane between tibia, fibula
 - Foot is dorsiflexed/ankle eversion
- Higher rate of injury in contact sports (American football)

 Higher rate of chronic ankle sprains → recurrent ankle sprains → ossification of interosseous membrane

SIGNS & SYMPTOMS

- Pain over lateral/medial ankle (depending on eversion/inversion mechanism)
- Swelling hours after inciting event
- Inability to ambulate

DIAGNOSIS

DIAGNOSTIC IMAGING

X-ray

• Evaluate for malleolar, distal fibular, talar dome fracture, syndesmotic separation complication

OTHER DIAGNOSTICS

Physical inspection

- History
 - Mechanism of foot inversion/eversion
 - Prior ankle injuries
 - Ability to walk after injury: correlates with fracture complication
- Observation: swelling/ecchymosis

Physical examination maneuvers

- Palpation
 - Fibula, distal tibia: syndesmotic injury
 - Foot: lateral, medial surface for evaluation of medial, lateral ligament complex pain
 - Thompson test: rule out achilles pathology
- Maneuvers of passive inversion/eversion (replicate pain)
 - Squeeze test (syndesmotic evaluation): examiner compresses fibular against tibia at level of mid-calf → pain in region of ATFL → likely syndesmotic sprain
 - External rotation stress test (syndesmotic evaluation): examiner stabilizes leg proximal to ankle → grasps plantar aspect of foot → externally rotated → pain in region of ATFL → likely syndesmotic sprain

- Anterior drawer test (ATFL integrity test): individual places affected foot in neutral position (slightly plantar-flexed, inverted) → examiner stabilizes lower leg with one hand → grasps heel with other while foot rests on examiner's anterior arm → anterior pull of foot → ↑ laxity of joint (vs. unaffected foot) → likely lateral sprain, ATFL instability
- Talar tilt test (calcaneofibular integrity test): individual places affected foot in neutral position → examiner grasps foot → passive inverts at ankle → ↑ inversion of ankle (vs. unaffected side) → likely lateral sprain, calcaneofibular instability

TREATMENT

MEDICATIONS

Acute

NSAIDs

SURGERY

• Reserved for ligament rupture in setting of chronic ankle instability

OTHER INTERVENTIONS

• Rehabilitation: physical therapy

Acute

- Rest: limit weight bearing, use crutches if individual is unable to bear weight
- Ice
- Early application of compressive wrapping
 → ↓ swelling
- Elevation of ankle $\rightarrow \downarrow$ swelling

UNHAPPY TRIAD

osms.it/unhappy-triad

PATHOLOGY & CAUSES

• Severe knee injury, typically after trauma, that results in trio of ACL, medial collateral ligament (MCL), lateral meniscus tears

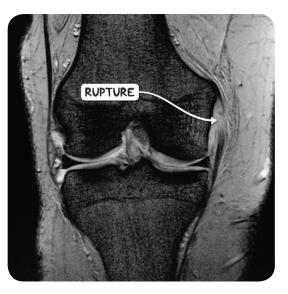
CAUSES

- During contact sports, forceful blow to posterolateral aspect of knee, with planted foot (lower body tackle from behind in rugby/American football)
- Pathophysiology: posterior force tears ACL
 → abnormal ↑ anterior glide of tibia relative
 to femur → medial rotation of tibia → tear
 of MCL with shearing force → further knee
 instability → increased rotational force →
 lateral meniscal tear

COMPLICATIONS

Osteoarthritis

SIGNS & SYMPTOMS


- Pain
- Hemarthrosis
- Popping/multiple pops

DIAGNOSIS

OTHER DIAGNOSTICS

Physical examination maneuvers

- ACL maneuvers
 - Anterior drawer test
 - Lachman test
- MCL maneuvers
 - Examiner stabilizes affected leg with one hand → exerts valgus stress on lateral aspect of knee → pain and ↑ laxity → likely MCL tear
- Lateral meniscus maneuvers
 - McMurray testing

Figure 115.7 An MRI scan of the knee in the coronal plane demonstrating a complete tear of the medial collateral ligament. Injury to the medial collateral ligament is one part of the unhappy triad

TREATMENT

MEDICATIONS

Acute

NSAIDs

SURGERY

- ACL repair: athletes/ individuals who desire return to play/demanding activity
- Lateral meniscus repair vs. meniscectomy

OTHER INTERVENTIONS

Acute

- Rest
- Ice
- Elevation/compression $\rightarrow \downarrow$ swelling
- Knee brace: ACL, MCL recovery; overall knee stability