NOTES GLOBE PATHOLOGY

GENERALLY, WHAT IS IT?

PATHOLOGY & CAUSES

- Disorders affecting eye structures; if untreated → severe visual impairment
- Due to damage to cornea, retina, lens, optic nerve
- Inherited/acquired

COMPLICATIONS

Impaired vision, blindness

SIGNS & SYMPTOMS

- Early stages often asymptomatic
- Visual changes

DIAGNOSIS

DIAGNOSTIC IMAGING

Direct/indirect fundoscopy

Visualize retina

OTHER DIAGNOSTICS

• Clinical presentation: history; visual acuity, field loss

Slit lamp

• Visualize sclera, conjunctiva, iris, lens, cornea

TREATMENT

MEDICATIONS

- Corneal ulcer
 - Antimicrobial, steroid eye drops; analgesics
- Age-related macular degeneration (ARMD)/ diabetic retinopathy (DR)
 - Intravitreal injections of vascular endothelial growth factor (VEGF) antagonists
- Glaucoma
 Beta blockers, alpha agonists

SURGERY

- Cataract
 - Small incision; removal of opacified lens
 - Alternative: leaving lens capsule intact (extracapsular cataract extraction), eye without lens (aphakic eye)
- DR
 - Laser photocoagulation of peripheral retina, vitrectomy
- Glaucoma
 - Laser surgery, trabeculectomy, peripheral iridotomy

OTHER INTERVENTIONS

- ARMD
 - Vitamin, antioxidant supplements; smoking cessation
- DR
 - Glucose, blood pressure control

AGE-RELATED MACULAR DEGENERATION (ARMD)

osms.it/macular-degeneration

PATHOLOGY & CAUSES

- Acquired degenerative disease of macula
 → loss of central vision; peripheral vision
 preserved; most common cause of severe
 visual impairment in older adults in high income countries
- Results from damage to photoreceptors of macula
- Unilateral/bilateral; contralateral eye at high risk

TYPES

Nonexudative ARMD

- AKA dry/atrophic; most common
- Drusen: extracellular deposits between Bruch membrane, retinal pigment epithelium (RPE)
 - $^\circ$ ↑ size, number of soft drusen \rightarrow ↑ risk of progression to advanced ARMD
- RPE changes: geographic atrophy, detachments, subretinal clumping

Exudative ARMD

- AKA wet/neovascular; less common
- Neovascularization: abnormal vessel formation under retina originating from choroidal circulation, penetrating through Bruch membrane beneath RPE → leakage of serous fluid, blood → collections, fibrosis

RISK FACTORS

- ↑ age; > 65 most common
- Family history: associated with polymorphisms in complement regulatory genes, esp. complement factor H (CFH)
- More common in individuals who are biologically female, white people of Ashkenazi Jewish descent
- Smoking, intense light exposure, heavy alcohol use, obesity, hypertension,

hyperlipidemia

COMPLICATIONS

• Severe visual impairment: impacts functional status, quality of life; complete loss of vision rare

SIGNS & SYMPTOMS

- Early stages: often asymptomatic; blurred vision; metamorphopsia (straight lines seen curved)
- Loss of central vision; gradual progression in nonexudative, rapid over weeks/months in exudative

DIAGNOSIS

DIAGNOSTIC IMAGING

Fluorescein dye retinal angiography

Fluorescein leaks from abnormal vessels

Optical coherence tomography

Retinal edema/subretinal fluid

Amsler grid

- Individual holds grid at 36–41cm/14–16in, looks at center dot
 - Curvy lines, blurry spots, scotomas

Direct/indirect fundoscopy

- Nonexudative ARMD
 - Drusen: white-yellowish, round/oval deposits
 - Retinal atrophy: round patches of depigmentation
 - RPE clumping: increased pigmentation
- Exudative ARMD
 - Neovascularization: gray discoloration
 - Subretinal fluid/hemorrhage

OTHER DIAGNOSTICS

 Clinical presentation: history; ↓ visual acuity, visual fields (central vision loss)

TREATMENT

MEDICATIONS

- Exudative ARMD
 - Intravitreal injections of VEGF antagonists to reduce neovascularization
 - Alternative: photodynamic therapy; injection of photosensitive dye verteporfin → damages neovascular endothelium; application of photoactivating laser

OTHER INTERVENTIONS

- No curative method; therapy aimed at slowing progression
- Vitamin, antioxidant supplements
- Nonexudative ARMD
 - Smoking cessation

Figure 77.1 Drusen in the macula of individual with age-related macular degeneration.

CATARACT

osms.it/cataract

PATHOLOGY & CAUSES

- Painless, gradual decline in vision due to opacification of lens
- Proteins deposit on lens → reduce transmission of light to retina → decrease in vision
- Often bilateral but asymmetrical; congenital/ acquired

TYPES

Nuclear

- Opacification of lens nucleus
- Slow progression of vision loss

Cortical

Opacification of lens fibers surrounding

nucleus (cortex)

Mild degradation of vision

Posterior subcapsular

- Opacification in posterior cortical layer under lens capsule
- Rapid progression

RISK FACTORS

- Age-related cataract; usually > 60
- Smoking, excessive alcohol use, prolonged drug use (esp. glucocorticoids), exposure to UV light, eye trauma/infections, radiation of intraocular tumor, trisomies (13, 18, 21)
- Metabolic diseases: diabetes mellitus, Wilson disease, galactosemia, myotonic dystrophy

COMPLICATIONS

- Blindness (if untreated)
- Secondary posterior subcapsular cataract due to migration of lens epithelium posterior cortical layer

Secondary glaucoma

- Phacolytic
 - Lysed lens proteins clog trabecular meshwork $\rightarrow \uparrow$ pressure
- Phacoanaphylactic
 - Autoimmune reaction to proteins $\rightarrow \uparrow$ pressure
- Phacomorphic
 - ${}^\circ$ Swollen lens \rightarrow closed angle glaucoma

Surgery

- Residual lens epithelial cells migrate over capsule → opacification, reduction in vision
- Endophthalmitis, bullous keratopathy, intraocular lens dislocation, cystoid macular edema, retinal detachment
- Toxic anterior segment syndrome
 - Inflammation of anterior segment due to noninfectious contaminants of surgical equipment

Figure 77.2 The eye of a 50-year-old male with a cataract.

SIGNS & SYMPTOMS

- Painless visual impairment; progresses slowly over many years
- Myopic shift: improvement in nearsightedness before decline in vision; lens sclerosis → increase in refractive power
- Blurry vision, poor vision at night, dullness of colors
- Glare, halos around bright lights; predominant in cortical cataract

DIAGNOSIS

DIAGNOSTIC IMAGING

Slit lamp

Loss of lens transparency

Indirect/direct fundoscopy

- Degree of lens opacity
- Obscuration of fundus details
- Darkening of normal red reflex from fundus

OTHER DIAGNOSTICS

Clinical presentation: history; ↓ visual acuity

TREATMENT

SURGERY

- Small incision
 - Phacoemulsification of lens, implantation of synthetic intraocular lens
- Removal of opacified lens (alternative)
 - Leaving lens capsule intact (extracapsular cataract extraction), eye without lens (aphakic eye)

CORNEAL ULCER

osms.it/corneal-ulcer

PATHOLOGY & CAUSES

- Inflammatory condition of cornea; usually infectious → dissolution of corneal stroma
- Presents as open corneal sore
- AKA ulcerative keratitis
- Exudate, cells leak into anterior chamber \rightarrow form hypopyon if sufficient quantity

CAUSES

 Bacteria, fungi, viruses (esp. herpes simplex, zoster), protozoa (e.g. Acanthamoeba)

RISK FACTORS

 Improper usage of contact lens, corneal abrasions, eye burns, xerophthalmia (i.e. dry eye), eyelid disorders, steroid eye drops, vitamin A deficiency

SIGNS & SYMPTOMS

 Red eye, severe pain, soreness, discharge (tearing, pus), eyelid swelling, blurred vision, vision loss, photophobia

DIAGNOSIS

DIAGNOSTIC IMAGING

- Slit lamp
- Reveals corneal ulcer/hypopyon
- Fluorescein dye
 - Ulcer margins (absorbed by exposed corneal stroma, appears green)
- Herpes simplex ulcers
 - Typical dendritic/geographic pattern

OTHER DIAGNOSTICS

- Clinical presentation: history; ↓ visual acuity

TREATMENT

MEDICATIONS

- Antimicrobial eye drops
- Analgesics for pain control
- Steroid eye drops after treatment of infection to reduce swelling, prevent scarring

SURGERY

• Corneal transplantation to replace damaged cornea if scarring decreases vision

Figure 77.3 A corneal ulcer caused by herpes simplex keratitis viewed with fluorescein under a UV lamp. The ulcer has a classical dendritic pattern.

DIABETIC RETINOPATHY (DR)

osms.it/diabetic-retinopathy

PATHOLOGY & CAUSES

- Type of retinopathy affecting individuals with diabetes mellitus → vision loss
- Long-standing diabetes mellitus/poor glycemic control → chronic hyperglycemia → retinal vascular changes (e.g. abnormal vascular permeability, vascular occlusions)
 → ischemia → production of VEGF → formation of abnormal blood vessels (neovascularization)

TYPES

Proliferative DR

Presence of neovascularization

Nonproliferative DR

• Absence of neovascularization; majority of cases; can progress to proliferative; hypertension, fluid retention exacerbate condition

COMPLICATIONS

- Visual loss due to
 - Macular edema (most common); vitreal hemorrhage from neovascularization; retinal detachment; neovascular glaucoma

SIGNS & SYMPTOMS

- Usually asymptomatic until late stages
- Decreased/fluctuating vision; presence of floaters, flashes of lights (photopsias); scotomas

DIAGNOSIS

DIAGNOSTIC IMAGING

Direct/indirect fundoscopy

Thickening of basement membrane,

microaneurysms, microocclusions, exudates, nerve-fiber layer infarcts (cotton wool spots), intraretinal hemorrhage, macular edema

OTHER DIAGNOSTICS

- Ophthalmologic screening: annual screening suggested for individuals with diabetes
- Clinical presentation:
 ↓ visual acuity

Figure 77.4 A retinal photograph demonstrating proliferative diabetic retinopathy. There are cotton wool spots and as well as neovascularisation of the retina.

TREATMENT

MEDICATIONS

• Intravitreal VEGF inhibitors for proliferative DR, significant macular edema

SURGERY

- Laser photocoagulation of peripheral retina
- Vitrectomy for vitreous hemorrhage/ severe proliferative DR nonresponsive to photocoagulation

OTHER INTERVENTIONS

 Glucose, blood pressure control to reduce progression of nonproliferative DR

GLAUCOMA

osms.it/glaucoma

PATHOLOGY & CAUSES

- Group of eye disorders; intraocular hypertension damages optic nerve → progressive peripheral visual field loss
- Aqueous humour drainage pathway becomes partially/completely blocked → fluid cannot easily drain out → pressure of anterior chamber builds up → intraocular hypertension (pressure > 21mmHg/2.8kPa)
 → affects eye structures → atrophy of outer rim of optic nerve → peripheral vision loss
- Intraocular pressure increases → continued damage to optic nerve → ganglion cell loss → loss of central vision

TYPES

Open Angle Glaucoma

- Angle between cornea, iris; most common
- Increased aqueous production/decreased outflow
- Secondary to uveitis, vitreous hemorrhage, retinal detachment

Closed Angle Glaucoma

- Narrowing/closure of anterior chamber angle → inadequate drainage of aqueous humor → increased intraocular pressure → optic nerve damage
- Acute: rapid buildup of pressure

Normal Tension Glaucoma

 Genetic hypersensitivity to intraocular pressures in normal range

RISK FACTORS

Open angle

↑ age, black people of African descent,

family history

Closed angle

COMPLICATIONS

If untreated, blindness

SIGNS & SYMPTOMS

Open angle

Asymptomatic

Closed angle

- Chronic: often asymptomatic, peripheral vision loss
- Acute (ophthalmic emergency): abrupt onset of severe eye pain, redness, blurry vision/vision loss, headache, nausea, halos around lights, fixed mid-dilated pupil, conjunctival redness, corneal edema

DIAGNOSIS

DIAGNOSTIC IMAGING

Tonometry

↑ intraocular pressure

Direct/indirect fundoscopy

- Cupping: hollowed-out appearance of optic nerve (thinning of outer rim)
- Increased cup-to-disc ratio; > 0.5 suggestive of glaucoma

Slit lamp

Special lens to visualize angle (gonioscopy)

OTHER DIAGNOSTICS

 Clinical presentation: history, ↓ visual acuity, visual field (peripheral vision loss; central loss at late stages)

TREATMENT

MEDICATIONS

Open angle

- Beta-adrenergic receptor antagonists, carbonic anhydrase inhibitors, alpha adrenergic agonists
 - □ ↓ production of aqueous humor
- Prostaglandin analogs, alpha adrenergic agonists
 - □ ↑ outflow of aqueous humor

Acute closed angle

• Eye drops (e.g. beta-blockers, alpha agonists); systemic (e.g. acetazolamide, urea, mannitol, glycerol)

SURGERY

Open angle

Laser surgery

- Open trabecular meshwork, increase aqueous outflow (trabeculoplasty); destroy humor producing cells; create new channel for aqueous humour drainage
- Surgical trabeculectomy
 Create alternate drainage pathway

Acute closed angle

 Peripheral iridotomy with laser
 Small hole through iris for aqueous humor drainage

Figure 77.5 A photograph of the eye of an individual with acute angle closure glaucoma. There is ciliary flush and a hazy cornea.

RETINAL DETACHMENT (RD)

osms.it/retinal-detachment

PATHOLOGY & CAUSES

- Separation of retinal photoreceptors from underlying retinal pigment epithelium (RPE), choroid; if untreated leads → vision loss
- Detachment of neurosensory retinal layer from underlying layers → ischemia, progressive degeneration of photoreceptors → vision loss

TYPES

Rhegmatogenous

- Most common
- Full thickness retinal break → vitreous fluid passes into subretinal space → retinal detachment
- Causes
 - Posterior vitreous detachment: most common, age 50–75, separation of

posterior vitreous membrane from retina due to natural age-related liquefaction of vitreous \rightarrow retinal breaks can occur in areas of strong vitreoretinal attachment

• Ocular trauma

Nonrhegmatogenous

- Vitreous traction
 - Abnormally strong vitreoretinal adhesion → contraction → detachment; proliferative diabetic retinopathy, retinopathy of prematurity
- Exudative
 - Fluid accumulation between layers; inflammatory conditions, choroidal neoplasms

RISK FACTORS

Rhegmatogenous

 High myopia; lattice degeneration (thinning of retinal periphery); family history; history of retinal detachment; ocular trauma; previous intraocular surgery (e.g. cataract surgery)

COMPLICATIONS

Vision loss, proliferative retinopathy

SIGNS & SYMPTOMS

- Sudden onset: floaters/flashes of light; if preceded by posterior vitreous detachment
- Monocular vision loss: curtain drawn over vision field

DIAGNOSIS

DIAGNOSTIC IMAGING

• \downarrow visual acuity

Ocular ultrasound

- E.g. choroidal masses
- Traction, exudative RD; find underlying cause

Direct/indirect fundoscopy

• Rhegmatogenous: wavy appearance, changes with eye movements, changes in vessel direction

- **Tractional:** smooth concave retinal surface; minimal shifting with eye movements
- Exudative: smooth retinal surface, shifting fluid

LAB RESULTS

• Diabetes: traction, exudative RD; find underlying cause

OTHER DIAGNOSTICS

Clinical history, physical examination

TREATMENT

SURGERY

- Laser photocoagulation/cryoretinopexy: seal retinal breaks, prevent retinal detachment
- Rhegmatogenous RD
 - Pneumatic retinopexy: intraocular injection of gas to tamponade retinal break (along with laser or cryoretinopexy)
 - Scleral buckles: silicone bands placed are sewed to sclera under rectus muscles (along with laser or cryoretinopexy)
 - Vitrectomy: removal of vitreous body to reduce the effect of vitreous traction to retina
- Tractional RD
 - Vitrectomy with scleral buckling

Figure 77.6 An MRI scan of the head in the axial plane demonstrating detachment of the right retina.

RETINOBLASTOMA

osms.it/retinoblastoma

PATHOLOGY & CAUSES

- Intraocular malignant tumor; affects children; presents as leukocoria
- Most common primary intraocular malignancy of childhood; usually < two years
- Associated with intracranial tumor
 - Pinealoblastoma (trilateral retinoblastoma)
- Mutational inactivation of both alleles of retinoblastoma (*RB1*) gene located in chromosome 13

TYPES

Heritable (40%)

- Germline mutations: inherited/de novo
- Presents at early age; bilateral/multifocal; 50% risk of passing to offspring

Nonheritable (60%)

- Somatic mutations in both alleles; negative family history
- Presents later in life; unilateral

RISK FACTORS

- Family history
- 13q14 deletion syndrome
 - Microdeletions in region 1 band 4
 located in large arm (q) of chromosome 13

COMPLICATIONS

- Fatal if untreated; with prompt treatment, survival > 95%
- Spreads via
 - ${}^\circ$ Choroid \rightarrow sclera, orbit \rightarrow destruction of globe \rightarrow vision loss
 - ${}^{\scriptscriptstyle \rm O}$ Optic nerve \rightarrow brain
 - \circ Subarachnoid space \rightarrow contralateral optic nerve, brain

- Blood \rightarrow lungs, bones, liver
- \circ Lymphatic vessels \rightarrow conjunctiva, eyelids, extraocular tissue
- Heritable retinoblastoma
 - Secondary malignancy (e.g. bone, soft tissue sarcomas)

Figure 77.7 The gross pathological appearance of a retinoblastoma.

Figure 77.8 A child with retinblastoma causing whitening of the right pupil known as leukocoria.

SIGNS & SYMPTOMS

- Leukocoria (abnormal white reflexion from retina)
- Strabismus, nystagmus, red eye

DIAGNOSIS

DIAGNOSTIC IMAGING

MRI (brain, orbits)

- T1-weighted: bright
- T2-weighted: dark compared to vitreous
- Detect optic nerve involvement, associated intracranial tumor

Direct/indirect fundoscopy

• Well-circumscribed, translucent, white intraretinal mass

Ocular ultrasound

Normal globe size, calcification

LAB RESULTS

- Genetic testing
 - Estimate risk in family members, future offspring

OTHER DIAGNOSTICS

• Metastasis evaluation (e.g. bone marrow aspiration, lumbar puncture)

TREATMENT

MEDICATIONS

- Local/systemic chemotherapy
 - Preserve vision, optimize survival

SURGERY

Cryopexy, laser photoablation, enucleation
 Preserve vision, optimize survival

Figure 77.9 An MRI scan of the head in the axial plane demonstrating a retinoblastoma of the left globe.

Figure 77.10 A retinoblastoma as seen on fundoscopy.

RETINOPATHY OF PREMATURITY

osms.it/retinopathy-of-prematurity

PATHOLOGY & CAUSES

- AKA retrolental fibroplasia
- Proliferative retinopathy, occurs in preterm infants; if untreated \rightarrow vision loss
- Common cause of childhood blindness
- Premature birth interrupts development → ↑ risk of vascular insult
- Supplemental oxygen administration → disruption of normal angiogenesis → abnormal growth of blood vessels, fibrous tissue affecting temporal part of retinal periphery
- Regress spontaneously in most cases

RISK FACTORS

 Gestational age < 30 weeks; birth weight < 1.5kg/3.3lbs; excessive oxygen therapy; supplemental oxygen

COMPLICATIONS

- Retinal bleeding, scarring
- Contraction of fibrovascular tissue \rightarrow retinal detachment \rightarrow blindness
- Refractive errors: myopia, anisometropia
- Squint/strabismus
- Glaucoma

SIGNS & SYMPTOMS

• Blindness due to retinal detachment, if untreated

DIAGNOSIS

DIAGNOSTIC IMAGING

Fundoscopy

- Direct/indirect following pupil dilation
 - Disorganized growth of vessels, fibrous tissue

- Classification
 - Location: three concentric zones from optic disc to periphery
 - Extent: retina divided in 12 parts (hours of a clock)
 - Stage I: thin white demarcation line separating vascularized from avascular retina
 - Stage II: ridge of fibrous tissue into vitreous between vascularized, avascular retina
 - Stage III: abnormal growth of fibrovascular tissue on ridge; extension into vitreous
 - Stage IV: partial retinal detachment
 - Stage V: total retinal detachment
 - Plus disease: increased venous dilation, tortuosity of posterior retinal vessels, vitreous haze

OTHER DIAGNOSTICS

Screening of preterm infants

TREATMENT

MEDICATIONS

Intravitreal injection of VEGF antagonists

SURGERY

 Ablation of retina with laser photocoagulation

Figure 77.11 A CT scan of the head in the axial plane demonstrating increased density and asymmetry of the globes in a one year old biologically-female individual. The increase in density is caused by retinal detachment and subsequent fibrous reorganisation of the vitreous.