NOTES

GENERALLY, WHAT ARE THEY?

PATHOLOGY & CAUSES

- Kidney abnormalities present at birth
- Polycystic kidney disease, multicystic dysplastic kidney, horseshoe kidney, renal agenesis

Developmental phases

 Pronephros → mesonephros → migrate upwards into abdomen → separate into two kidneys

COMPLICATIONS

Progressive renal damage, renal failure

RISK FACTORS

- More common in individuals who are biologically male
- **Pregnancy:** high BMI, alcohol abuse, smoking, teratogenic medication
- Genetics

SIGNS & SYMPTOMS

• Potter sequence (epicanthal folds, low-set ears, flat nose, recessed chin)

DIAGNOSIS

DIAGNOSTIC IMAGING

Ultrasound, CT scan, intravenous urethrogram, MRI

LAB RESULTS

• Evaluate renal function; blood urea nitrogen (BUN), creatinine, estimated glomerular filtration rate (eGFR), serum electrolytes

OTHER DIAGNOSTICS

• Visible at birth: bladder exstrophy, hypospadias, epispadias

TREATMENT

MEDICATIONS

- Support renal function
 - Diuretics, erythropoietin (EPO), medication for electrolyte imbalances, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers

SURGERY

Kidney transplant

OTHER INTERVENTIONS

Dialysis

 If kidney(s) no longer functional, machine performs kidney function; filtering, purifying blood by removing waste, excess fluid

HORSESHOE KIDNEY

osms.it/horseshoe-kidney

PATHOLOGY & CAUSES

- AKA renal fusion, congenital disorder; two kidneys fuse during fetal development → one large, horseshoe-shaped kidney
- Week 7–8
 - Horseshoe-shaped kidney tries to migrate from pelvis up into abdomen → gets hooked around inferior mesenteric artery → remains low in abdomen

CAUSES

Mechanical fusion

- Metanephros stage (gestation week 5)
- Flexion/growth of developing spine, pelvic organs → pushes kidneys together → lower poles of kidneys fuse → fibrous isthmus forms
 - Isthmus made of connective tissue

Teratogenic event

- Posterior nephrogenic cells (help form part of kidney) migrate to wrong spot → parenchymal isthmus forms → connects kidneys
 - Isthmus made of kidney cells

RISK FACTORS

- More common in individuals who are biologically male
- Chromosomal disorders (e.g. Turner syndrome, trisomy 13, 18, 21)
- Neural tube defects

COMPLICATIONS

• Hydronephrosis, kidney stones, infection, kidney cancer (especially Wilms' tumor, carcinoid tumor), obstruction, vesicoureteral reflux, infection, polycystic kidney disease

SIGNS & SYMPTOMS

 Mostly asymptomatic, sweating, nausea, vomiting; hematuria; fever, chills; cloudy urine

DIAGNOSIS

Usually incidental

DIAGNOSTIC IMAGING

Ultrasound

• Periodic monitoring for early Wilms' tumor detection

CT scan

• 3D scanning: evaluate anatomy, collecting system

MRI

- Provide anatomical information
- Evaluate arterial anatomy before surgery
- Check renal artery stenosis in hypertensive people

LAB RESULTS

 BUN, creatinine, glomerular filtration rate (GFR), serum studies, 24-hour kidney stone risk assessment

TREATMENT

MEDICATIONS

• For renal disease (e.g. erythropoietin, ACE inhibitors)

SURGERY

Possibly corrective surgery

Figure 110.1 An abdominal CT scan in the axial plane demonstrating a horseshoe kidney. There is renal tissue connecting the right and left kidneys.

Figure 110.2 A 3D-reconstruction MRI in an anterior view in an individual with a horseshoe kidney.

MEDULLARY CYSTIC KIDNEY DISEASE (MCKD)

osms.it/mdullary-cystic-kidney-disease

PATHOLOGY & CAUSES

- A group of autosomal dominant kidney diseases that cause progressive renal failure
- AKA autosomal dominant tubulointerstitial kidney disease (ADTKD)

TYPES

Uromodulin kidney disease (UKD)

- Caused by UMOD gene mutations
- Encodes uromodulin (Tamm–Horsfall protein), a non-ciliary protein
 - Maintains integrity of the thick ascending limb of the loop of Henle
- Intracellular abnormal uromodulin accumulation → tubular cell atrophy → progressive renal failure + ↓ urate excretion → hyperuricemia, gout

ADTKD due to REN mutations: REN (ADT-KD-REN)

- Caused by REN gene mutations
- Encodes renin, a key hormone in the RAAS pathway
- Intracellular pre-prorenin accumulation

 → structural damage, apoptosis of renin-producing cells → progressive renal failure
 + ↓ renin production → ↓ blood pressure, anemia

Mucin-1 kidney disease (MKD)

- Caused by MUC1 gene mutations
- Encodes mucin-1
- Pathophysiology not completely understood; results in progressive renal failure

COMPLICATIONS

 Gout, chronic kidney disease, end-stage renal disease (ESRD), low blood pressure, anemia

SIGNS & SYMPTOMS

Clinical manifestations of chronic kidney disease

UKD

Gout occurs at early age

ADTKD-REN

 Low/low-normal blood pressures, anemia (occurs in childhood; resolves in adolescence from the influence of sex hormones), mild hyperkalemia

MKD

 ↑ serum creatinine, hyperuricemia and gout occurring later in life

DIAGNOSIS

DIAGNOSTIC IMAGING

Ultrasound

 Small to normal kidneys with occasional cysts

LAB RESULTS

Urinalysis

See presumptive diagnosis factors for each subtype

Biopsy

Interstitial fibrosis

OTHER DIAGNOSTICS

Confirmed through genetic testing

UKD (presumptive diagnosis factors)

- All three of the following
 - Strong family history of kidney disease
 - Family history of gout
 - Urinalysis: bland urinary sediment; absence of proteinuria or hematuria

ADKTD-REN (presumptive diagnosis factors)

- Family history of chronic kidney disease, plus one of the following
- Unexplained anemia out of proportion to ↓ glomerular filtration rate
- Evidence of acute kidney injury; bland urinary sediment
- Chronic kidney disease + hyperkalemia, low or low-normal blood pressure, and hyperuricemia

MKD (presumptive diagnosis factors)

- Presentation chronic kidney disease plus each of the following findings
 - Urinalysis: bland urinary sediment; little or no proteinuria
 - Absence of symptoms associated with UKD (precocious gout) or ADKTD-REN (childhood anemia, hyperkalemia, and hyperuricemia)

TREATMENT

MEDICATIONS

UKD

Gout: allopurinol

ADTKD-REN

- Symptomatic anemia: erythropoietin
- Low blood pressure, hyperkalemia: fludrocortisone
- Avoid NSAIDs

SURGERY

• Treat progressive renal failure; kidney transplantation

MEDULLARY SPONGE KIDNEY (MSK)

osms.it/medullary-sponge-kidney

PATHOLOGY & CAUSES

- Rare congenital disorder characterized by ectasia (dilation) of the renal collecting ducts
- Genetic basis for developmental abnormality is incompletely understood; may involve embryonic disruption of the ureteral-bud and the metanephric blastema
- Renal collecting duct dilation, distension

 → urinary stasis → medullary cyst
 formation → impaired acidification in the
 terminal collecting duct → ↑ urine pH →
 nephrocalcinosis

RISK FACTORS

 Associated conditions include hemihypertrophy, Beckwith–Wiedemann syndrome

COMPLICATIONS

- Urinary tract infections
- Nephrocalcinosis
- Renal calculi (calcium phosphate, calcium oxalate)
- Chronic kidney disease

SIGNS & SYMPTOMS

• Often asymptomatic, flank pain, renal colic, hematuria, dysuria, nocturia

DIAGNOSIS

• Often discovered incidentally during investigations for another indication

DIAGNOSTIC IMAGING

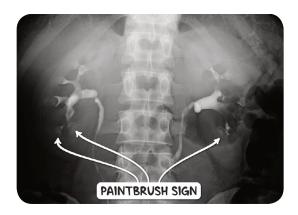
Intravenous pyelography

 Cystic dilatations have brushlike appearance; enlarged pyramids; clusters of stones

CT scan

Medullary nephrocalcinosis

LAB RESULTS


• Hypercalciuria, hyperuricosuria, hypocitraturia, and hyperoxaluria

TREATMENT

MEDICATIONS

Treat complications

- Urinary tract infection: antibiotics
- Recurrent stone formation: potassium citrate, thiazide diuretics, ↑ fluid intake, ↓ sodium in diet

Figure 110.3 An X-ray image of the kidney, ureters and bladder. The dilated collecting ducts of the nephron give a paintbrush effect to each renal calyx.

MULTICYSTIC DYSPLASTIC KIDNEY (MCDK)

osms.it/dysplastic-kidney

PATHOLOGY & CAUSES

- Congenital disease, one/both kidneys do not form correctly → urine does not drain properly, builds up in kidneys, forms multiple fluid-filled sacs (cysts)
- Result of abnormal induction of metanephric blastema by ureteric bud
 - Possibly due to malformation of mesonephric duct/ureteric bud/both
- Ureteric bud fails to produce ureters, renal calyces, collecting ducts, collecting tubules
 - Urine cannot exit kidney, builds up \rightarrow forms fluid-filled cysts
 - Fluid-filled cysts composed of abnormal connective tissue replace normal kidney tissue → kidney function decreases

CAUSES

- Mostly sporadic
- Potential link to medication during pregnancy
 - ACE inhibitors, illicit drugs (e.g. cocaine)
- Without treatment → kidney involutes (shrinks due to inactivity)

RISK FACTORS

 More common in individuals who are biologically male, genetic syndromes (papillorenal syndrome; error in genes EYA1, SIX1, PAX2)

COMPLICATIONS

Bilateral MCDK

Potter sequence

Unilateral MCDK

Uncommon, risk of chronic kidney disease

SIGNS & SYMPTOMS

Unilateral MCDK

Asymptomatic/palpable flank mass

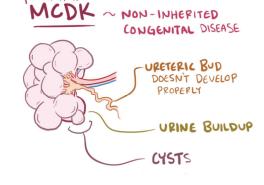
Bilateral MCDK

Potter sequence

DIAGNOSIS

 May go undiagnosed if unilateral, no palpable flank mass, remaining kidney compensating fully

DIAGNOSTIC IMAGING


Antenatal ultrasound

- Most common
- Visualize kidney containing multiple large, peripheral cysts

Ultrasound

• Performed on neonate if health professionals detect palpable flank mass

MULTI CYSTIC DYSPLASTIK KIDNEY

Figure 110.4 Pathological features of multicystic dysplastic kidney.

TREATMENT

SURGERY

Mild bilateral MCDK

- Dialysis, kidney transplant
- Newborn requires dialysis/kidney transplant

OTHER INTERVENTIONS

Unilateral MCDK

Observation

- Affected kidney involutes
- Follow-up
 - Serial ultrasound evaluation at birth, four weeks, two years, five years, 10 years of age; blood pressure, urinalysis (for proteinuria), renal function studies

Severe bilateral MCDK

- Provide support for Potter sequence
- Newborns generally don't survive

POLYCYSTIC KIDNEY DISEASE (PKD)

osms.it/polycystic-kidney

PATHOLOGY & CAUSES

- Genetic disease, kidneys fill with hundreds of cysts → become larger, unable to function
- Cysts in outer layer (cortex), inner layer (medulla) of kidneys
- Cysts lined with renal tubular epithelium, become larger
- Cysts make kidneys larger over time → compress blood vessels of neighboring healthy nephrons → starve neighboring nephrons of oxygen → poor perfusion of kidneys activates renin-angiotensinaldosterone system → retain fluid → hypertension
- Large cysts → compress collecting system
 → urinary stasis → kidney stones

TYPES

Autosomal dominant

- AKA adult PKD; usually manifests in adulthood
- Polycystin 1 (PKD1), polycystin 2 (PKD2)
 - Necessary for inhibition of cell proliferation; if absent, cells proliferate abnormally, water moves to cyst lumen
- PKD1 gene mutation \rightarrow more severe, earlier onset
- PKD2 gene mutation → less severe, later onset

Autosomal recessive

- AKA infantile PKD; usually manifests in infancy
 - Possible renal failure before birth \rightarrow trouble producing urine \rightarrow low amniotic

fluid (oligohydramnios)

- Inherited mutation on both copies of polycystic kidney hepatic disease 1 (PKHD1) gene, fibrocystin protein
 - Fibrocystin co-localizes with PKD2 regulation pathway, calcium signaling similar to autosomal dominant

RISK FACTORS

Autosomal dominant

One parent passes along PKD1/PKD2 mutation

Autosomal recessive

Both parents pass along PKHD1 mutation

COMPLICATIONS

- Renal insufficiency \rightarrow renal failure
- Kidney stones

Autosomal dominant

- Cerebral artery berry aneurysms
- Mitral valve prolapse
- Benign hepatic cysts
- Heart failure (due to aortic root dilation)

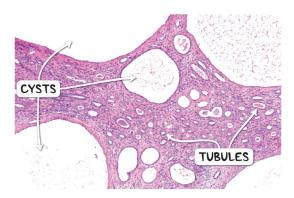
Autosomal recessive

- Congenital hepatic fibrosis → portal hypertension
- Ascending cholangitis (due to obstructed biliary tree)

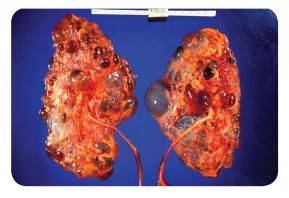
SIGNS & SYMPTOMS

• Flank pain, high blood pressure, hematuria (blood in urine), renal insufficiency, renal failure, fetal oligohydramnios in autosomal recessive PKD

DIAGNOSIS


DIAGNOSTIC IMAGING

Prenatal ultrasound


- For autosomal recessive polycystic kidney disease
- Bilaterally large kidneys with cysts, oligohydramnios

LAB RESULTS

• Complete blood count (CBC), urinalysis, urine culture

Figure 110.5 Histological appearance of renal parenchyma in a case of polycystic kidney disease.

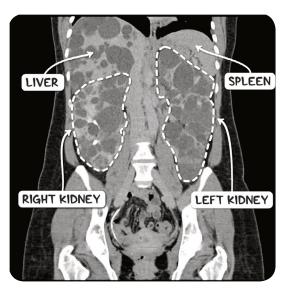
Figure 110.7 The gross pathological appearance of polycystic kidneys.

TREATMENT

MEDICATIONS

- Hypertension: ACE inhibitors, angiotensin receptor blockers
- Cholestasis: ursodiol (slows down rate of cholesterol absorption by intestines)

SURGERY


Kidney transplant

Portal hypertension

 Portocaval shunt → bypasses liver, connects portal vein to inferior vena cava; liver transplant

OTHER INTERVENTIONS

Dialysis

Figure 110.6 A CT scan in the coronal plane demonstrating innumerable cysts in the kidneys and liver in autosomal dominant polycystic kidney disease.

RENAL AGENESIS

osms.it/renal-agenesis

PATHOLOGY & CAUSES

- Ureteric bud fails to induce metanephric blastema to develop \rightarrow one/both kidneys don't form

TYPES

Unilateral renal agenesis (URA)

- One kidney does not develop
 - Usually asymptomatic if other kidney healthy, able to compensate
 - Predisposes individuals to more serious renal problems

Bilateral renal agenesis (BRA)

- Neither kidney develops
 - Incompatible with life outside womb
 - Usually fatal within first few days after birth; no treatment

CAUSES

 Combination of genetic/in utero environmental factors (toxins, infections)

RISK FACTORS

• More common in individuals who are biologically male

COMPLICATIONS

URA

 Hypertrophy of remaining kidney, infections, kidney stones, hypertension, renal failure

BRA

• Oligohydramnios, pulmonary hypoplasia, Potter sequence

SIGNS & SYMPTOMS

- Oligohydramnios/anhydramnios (no amniotic fluid)
- Symptoms at birth include high blood pressure, protein/blood in urine, swelling of face/extremities

URA

 Bsually asymptomatic if other kidney healthy

BRA

- Babies ill at birth, usually do not live
 Widely separated eyes with epicanthal folds
 - Low set ears
 - Flat, broad nose
 - Small chin
 - Underdeveloped lungs

DIAGNOSIS

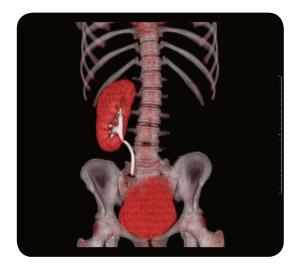
DIAGNOSTIC IMAGING

Prenatal ultrasound/MRI

Confirm diagnosis

OTHER DIAGNOSTICS

Oligohydramnios/anhydramnios


TREATMENT

SURGERY


Kidney transplant

OTHER INTERVENTIONS

- Routine monitoring
- Dialysis

Figure 110.8 A 3D reconstruction of a CT scan demonstrating left-sided renal agenesis.

Figure 110.9 An MRI scan in the coronal plane demonstrating right-sided renal agenesis.