

NOTES GAS EXCHANGE

GAS EXCHANGE & LAWS

- Diffusion of oxygen (O₂), carbon dioxide (CO₂) in lungs, peripheral tissues
- Alveolar O_2 from inhaled gas \rightarrow pulmonary capillary blood \rightarrow circulation \rightarrow tissue capillaries \rightarrow cells
- CO_2 from cells \rightarrow tissue capillaries \rightarrow circulation \rightarrow pulmonary capillary blood \rightarrow CO_2 for exhalation from alveoli
- Gas exchange, gas behavior in solution is governed by fundamental physical gas properties → represented by gas laws

FORMS OF GAS IN SOLUTION

Dissolved gas

- All gas in solution are to some extent carried in a freely dissolved form
- For given partial pressure, the higher

the solubility of a gas, the higher the concentration in solution

- In solution only dissolved gas molecules contribute to partial pressure
- Of the gases inspired as air, only nitrogen is exclusively carried in dissolved form

Bound gas

- O₂, CO₂, CO are bound to proteins in blood
- O_2 , CO_2 , CO can all bind to hemoglobin
- CO₂ also binds to plasma proteins

Chemically modified gas

- The ready back and forth conversion of CO₂ to bicarbonate (HCO₃⁻) in presence of enzyme carbonic anhydrase allows CO₂ to contribute to gas equilibria despite chemical conversion
- Majority of CO₂ in blood carried as HCO₃⁻

IDEAL (GENERAL) GAS LAW

osms.it/ideal-gas-law

- Relates multiple variables to describe state of a hypothetical "ideal gas" under various conditions
 - Ideal gas: theoretical gas composed of many randomly moving point particles whose only interactions are perfectly elastic collisions
 - All gas laws can be derived from general gas law
- PV = nRT
 - P = Pressure (millimeters of mercury (mmHg)
 - "V = Volume (liters (L))
 - n = Moles (mol)
 - R = Gas constant (8.314 J/mol)
 - T = Temperature (Kelvin [K])

- In gas phase: body temperature, pressure (BTPS) used
 - □ T = 37°C/98.6°F/310K
 - P = Ambient pressure
 - Gas is saturated with water vapor (47mmHg)
- In liquid phase/solution: standard temperature, pressure (STPD) used
 - □ T = 0°C/32°F/273K

□ P = 760mmHg

- Dry gas (no humidity)
- Ideal gas law can be used to interconvert between properties of same gas under BTPS, STPD conditions
 - E.g. gas volume (V₁) at BTPS \rightarrow gas volume at STPD (V₂)

$$V_{2} = V_{1} \times \frac{T_{1}}{T_{2}} \times \frac{P_{1} - P_{w1}}{P_{2} - P_{w2}}$$
$$V_{2} = V_{1} \times \frac{273}{310} \times \frac{760 - 47}{760 - 0}$$

$$V_2 = V_1 \times 0.826$$

BOYLE'S LAW

osms.it/Boyles-law

- Describes how pressure of gas ↑ as container volume ↓
- $P_1V_1 = P_2V_2$
- For gas at given temperature, the product of pressure, volume is constant
- Inspiration → diaphragm contraction → ↑ lung volume
- If PV constant + lung volume $\uparrow \rightarrow$ pressure \downarrow
- Pressure ↓ → disequilibrium between room, lung air pressures → air fills lungs to equalize pressure

DALTON'S LAW

osms.it/Daltons-law

- Total pressure exerted by gaseous mixture
 = sum of all partial pressures of gases
 in mixture → partial pressure of gas in
 gaseous mixture = pressure exerted by that
 gas if it occupied total volume of container
- $P_x = P_B \times F$
 - Px = partial pressure of gas (mmHg)
 - $P_{_{\rm B}}$ = barometric pressure (mmHg)
 - F = fractional concentration of gas (no unit)
- Partial pressure = total pressure X fractional concentration of dry gas
- For humidified gases

- ${}^{\tiny \Box} \mathsf{P}_{_{\!\!X}} = (\mathsf{P}_{_{\!\!B}} \mathsf{P}_{_{\!\!H2O}}) \times \mathsf{F}$
- P_{H20} = Water vapor pressure at 37°C/98.6°F (47mmHg)
- If the sum of partial pressures in a mixture = total pressure of mixture \rightarrow barometric pressure (P_B) is sum of the partial pressures of O₂, CO₂, N₂ (nitrogen), and H₂O
- At barometric pressure (760 mmHg) composition of humidified air is O₂, 21%; N₂, 79%; CO₂, 0%
- Within airways, air is humidified thus water vapor pressure is obligatory = to 47mmHg at 37°C/98.6°F

HENRY'S LAW

osms.it/Henrys-law

- For concentrations of dissolved gases
- When gas is in contact with liquid → gas dissolves in proportion to its partial pressure → greater concentration of a particular gas, in gas phase → more dissolves into solution at faster rate
 - $\circ C_x = P_x \times Solubility$
 - C_x = concentration of dissolved gas (mL gas / 100mL blood)
 - Concentration of gas in solution only applies to dissolved gas that is free in solution
 - Concentration of gas in solution does not include any gas that is presently bound to any other dissolved substances (e.g. plasma proteins/ hemoglobin)
 - P_x = partial pressure of gas (mmHg)
 - Solubility = solubility of gas in blood (mL gas / 100mL blood per mmHg)
- Henry's law governs gases dissolved within solution (e.g. O₂, CO₂ dissolved in blood)

- To calculate gas concentration in liquid phase
 - Partial pressure of gas in gas phase
 → partial pressure in liquid phase → concentration in liquid
 - Partial pressure of gas in liquid phase (at equilibrium) = partial pressure of gas in gaseous phase
 - If alveolar air has PO_2 of 100mmHg \rightarrow PO_2 of capillary blood that equilibrates with alveolar air = 100mmHg

HYPERBARIC CHAMBERS

- Hyperbaric chambers employ Henry's law
 - Contain O_2 gas pressurized to above 1 atm \rightarrow greater than normal amounts of O_2 forced into the blood of the enclosed individual
 - Used to treat carbon monoxide poisoning, gas gangrene due to anaerobic organisms (cannot live in presence of high concentrations of O₂), improve oxygenation of skin grafts, etc.

FICK'S LAWS OF DIFFUSION

osms.it/Ficks-law-of-diffusion

Describes diffusion of gases

$$V_x = \frac{DA\Delta P}{\Delta x}$$

- V_x = volume of gas transferred per unit time
- D = gas diffusion coefficient
- A = surface area
- ΔP = partial pressure difference of gas
- Δx = membrane thickness
- Driving force of gas diffusion is difference

in partial pressures of gas (ΔP) across membrane (not the concentration difference)

- If P_{02} of alveolar air = 100mmHg
- P₀₂ of mixed venous blood entering pulmonary capillary = 40mmHg
- Driving force across membrane is 60mmHg (100mmHg - 40mmHg)
- Diffusion coefficient of gas (D) is a combination of usual diffusion coefficient (dependent on molecular weight) and gas solubility
- Diffusion coefficient dramatically affects

diffusion rate, e.g. diffusion coefficient for CO_2 is approximately 20x greater than that of $O_2 \rightarrow$ for a given partial pressure difference CO_2 would diffuse across the same membrane 20x faster than O_2

LUNG DIFFUSION CAPACITY (DL)

- A functional measurement which takes into account
 - Diffusion coefficient of gas used
 - Membrane surface area
 - Membrane thickness
 - Time required for gas to combine with proteins in pulmonary capillary blood (e.g. hemoglobin)
- Measured using carbon monoxide (CO) → CO transfer across alveolar-capillary barrier exclusively limited by diffusion process
- Lung diffusion capacity of carbon monoxide

 (DL_{co}) is measured using a single breath

- Individual breathes a mixture of gases with a low CO concentration → rate of CO disappearance is predictable in different disease states
- Emphysema \rightarrow destruction of alveoli \rightarrow decreased surface area for gas exchange \rightarrow decreased DL_{co}
- \circ Fibrosis/pulmonary edema \rightarrow increase in membrane thickness (via fluid accumulation in the case of edema) \rightarrow decreased ${\rm DL}_{\rm CO}$
- Anemia \rightarrow reduced hemoglobin \rightarrow reduced protein binding in a given time period \rightarrow decreased DL_{co}
- Exercise → increased utilization of lung capacity, increased recruitment of pulmonary capillaries → increased DL_{co}

GRAHAM'S LAW

osms.it/Grahams-law

- Diffusion rate of gas through porous membranes varies inversely with the square root of its density
- To compare rate of effusion (movement through porous membrane) of two gases → velocity of molecules determine the rate of spread
- Kinetic temperature in kelvin of a gas is directly proportional to average kinetic energy of gas molecules → at the same temperature, molecule of heavier gas will have a slower velocity than those of lighter gas

• Kinetic energy = $\frac{1}{2}mv^2$

$$v_1 v_1^2 = \frac{1}{2}m_2 v_2^2$$

$$v_1^2 / v_2^2 = m_2 / m_1$$

$$v_1 / v_2 = \sqrt{(m_2 / m_1)}$$

 Which can be rewritten to give Graham's law

$$\frac{Rate_1}{Rate_2} = \sqrt{\frac{M_2}{M_1}}$$

GAS EXCHANGE IN THE LUNGS

osms.it/gas-exchange-in-lungs

PULMONARY GAS EXCHANGE

- AKA external respiration
- Pulmonary capillaries perfused with blood from right heart (deoxygenated)
- Gas exchange occurs between pulmonary capillary, alveolar gas
 - \circ Room air \rightarrow inspired air \rightarrow humidified tracheal air \rightarrow alveoli
 - $^\circ$ O $_2$ diffuses from alveolar gas \rightarrow pulmonary capillary blood
 - CO_2 diffuses from pulmonary capillary blood \rightarrow alveolar gas
 - \circ Blood exits the lungs \rightarrow left heart \rightarrow systemic circulation

Dry inspired air

- P_{02} is approximately 160mmHg
 - Barometric pressure x fractional concentration of O₂ (21%)
 - P₀₂ = 760mmHg x 0.21
 - Assume no CO₂ in dry inspired air

Humidified tracheal air

- P₀₂ of humidified tracheal air is 150mmHg

 - $^{\rm o}$ At 37°C/98.6°F, $\rm P_{_{H20}}$ is 47mmHg
 - ^o P₀₂ = (760mmHg 47mmHg) x 0.21
 - $\mbox{ }$ Assume no $\mbox{CO}_{\rm 2}$ in humidified inspired air

Alveolar air

- Pressures of alveolar gas designated "PA"
- Alveolar gas exchange in lungs sees a drop in O_2 partial pressure, increase in CO_2 partial pressure
- PA₀₂ = 100mmHg
- PA_{CO2} = 40mmHg
- Amount of these gases entering/leaving alveoli correspond to physiological body needs (i.e. O₂ consumption, CO₂ production)

Pulmonary capillaries

- Blood entering pulmonary capillaries is mixed venous blood
- Tissues (metabolic activity alters composition of blood) → venous vasculature → right heart → pulmonary circulation
- $P_{02} = 40 \text{mmHg}$
- P_{CO2} = 46mmHg

Systemic arterial blood (oxygenated)

- Gas partial pressures of systemic arterial blood designated "Pa"
- In a healthy individual, diffusion of gas across alveolar, capillary membrane is so rapid that we can assume equilibrium is achieved between alveolar gases, pulmonary capillaries $\rightarrow P_{02}$ and P_{C02} of blood leaving pulmonary capillaries = alveolar air
- PA₀₂ = Pa₀₂ = 100mmHg
- $PA_{CO2} = Pa_{CO2} = 40 \text{mmHg}$
- This blood enters systemic circulation to eventually return to lungs

Physiological shunt

- Small fraction of pulmonary blood flow bypasses alveoli \rightarrow physiological shunt \rightarrow blood not arterialized \rightarrow systemic blood has slightly lower P₀₂ than alveolar air
- Shunting occurs due to
 - Coronary venous blood, drains directly into left ventricle
 - Bronchial blood flow
- Shunting may be increased in various pathologies → ventilation-perfusion defects/mismatches
- As shunt size increases → alveolar gas, pulmonary capillary blood do not equilibrate → blood is not fully arterialized
- A-a difference: difference in P₀₂ between alveolar gas (A), systemic arterial blood (a)
 - Physiological shunting → negligible/ small differences
 - Pathology → notably increased difference

FACTORS AFFECTING EXTERNAL RESPIRATION

Thickness of respiratory membrane

- In healthy lungs, respiratory membrane \rightarrow 0.5–1 micrometer thick
- Presence of small amounts of fluid (left heart failure, pneumonia) → significant loss of efficiency, equilibration time dramatically increases → the 0.75 seconds blood cells spend in transit through pulmonary circulation may not be sufficient

Surface area of respiratory membrane

- Greater surface area of respiratory membrane → greater amount of gas exchange
- Healthy adult male lungs have surface area of 90m²
- Pulmonary diseases (e.g. emphysema)
 → walls of alveoli break down → alveolar chambers enlarge → loss of surface area
- Tumors/pneumonia → prevent gas from occupying all available lung → loss of surface area

Partial pressure gradients and gas solubilities

- Partial pressures of O₂, CO₂ drive diffusion of these gases across respiratory membrane
- Steep O₂ partial pressure gradient exists
 - PO₂ of deoxygenated blood in pulmonary arteries = 40mmHg
 - ${}^{\circ}$ PO₂ of 104mmHg in alveoli
 - O₂ diffuses rapidly from alveoli into pulmonary capillary blood
- O₂ equilibrium (PO₂ of 104mmHg on both sides of respiratory membrane) occurs in around 0.25 seconds of transit through lungs (about ¹/₃ of the time available)
- CO₂ has smaller gradient \rightarrow 5mmHg (45mmHg vs 40mmHg), although pressure gradient for O₂ is much steeper than for CO₂, CO₂ is 20x more soluble in plasma, alveolar fluid than O2 \rightarrow equal amounts of gas exchanged

Ventilation-perfusion coupling

- Ventilation: amount of gas reaching alveoli
- Perfusion: amount of blood flow in pulmonary capillaries
- These are regulated by local autoregulatory

mechanisms \rightarrow continuously respond to local conditions \rightarrow some control in blood flow around lungs

- Arteriolar diameter controlled by P_{02}
 - If alveolar ventilation is inadequate \rightarrow blood taking O₂ away faster than ventilation can replenish it \rightarrow low local P₀₂ \rightarrow terminal arteriole restriction \rightarrow blood redirected to respiratory areas with high P₀₂, oxygen pickup more efficient
 - In alveoli where ventilation is maximal \rightarrow high P₀₂ \rightarrow pulmonary arteriole dilation \rightarrow blood flow into pulmonary arterioles increases
 - Pulmonary vascular muscle autoregulation is opposite of that in systemic circulation
- Bronchiolar diameter controlled by P_{CO2}
 - Bronchioles connecting areas where PA_{CO2} high \rightarrow dilation \rightarrow allows CO_2 to be eliminated from body
 - Those with low $CO_2 \rightarrow constrict$
- Independent autoregulation of arterioles, bronchioles → matched perfusion, ventilation
- Ventilation-perfusion matching is imperfect
 - Gravity → regional variation in blood, air flow (apices have greater ventilation but lesser perfusion, bases have greater perfusion, lesser ventilation)
 - Occasionally alveolar ducts may be plugged with mucus → unventilated areas

INTERNAL RESPIRATION

- Capillary gas exchange in body tissue
- Partial pressures, diffusion gradients are reversed from lungs however physical laws governing the exchanges remain identical
- Cells in body continuously use O_2 , produce CO_2
 - PO_2 always lower in tissue than arterial blood (40mmHg vs 100mmHg) $\rightarrow O_2$ moves rapidly from blood \rightarrow tissues until equilibrated
 - CO₂ moves rapidly down its pressure gradient (P_{CO2} of 40mmHg in fresh blood arriving at capillary beds beds vs. P_{CO2} of 45mmHg in tissues) → venous blood → right heart

• Gas exchange at tissue level driven by partial pressures, occurs via simple diffusion

DIFFUSION-LIMITED & PERFUSION-LIMITED GAS EXCHANGE

osms.it/diffusion-limited-perfusion-limited-gas-exchange

Diffusion-limited gas exchange

- Diffusion is limiting factor determining total amount of gas transported across alveolar-capillary barrier
- As long as partial pressure gradient is maintained, diffusion continues
 - Gas readily diffuses across permeable membrane
 - Blood flow away from alveoli/chemical binding → partial pressure of gas on systemic end does not rise → partial pressure maintenance
 - Given a sufficiently long capillary bed diffusion will continue along entire length as equilibrium is not achieved
- Examples include
 - CO across alveolar-pulmonary capillary barrier
 - Oxygen during strenuous exercise/ emphysema/fibrosis

Perfusion-limited gas exchange

- Perfusion (blood flow) is the limiting factor determining total amount of gas transported across alveolar-capillary barrier
- Increasing blood flow → increasing amount gas transported; examples include
 - Nitrous oxide (N_2 O): not bound in blood \rightarrow entirely free in solution; PA_{N20} is constant, Pa_{N20} = zero at start of capillary \rightarrow initial large A-a difference \rightarrow because no N_2 O binds to any other components of blood, all of it remains free in solution \rightarrow partial pressure builds rapidly \rightarrow rapid equilibration, most of capillary length does not participate in gas exchange; new blood must be supplied to partake in further

gas exchange with alveolar $N_2O \rightarrow$ "perfusion-limited gas exchange"

- O₂ at rest
- CO₂

Limitations of O₂ transport

- Under physiological conditions O_2 transport into pulmonary capillaries \rightarrow perfusion-limited
- Diseased or abnormal conditions \rightarrow diffusion-limited
- Perfusion-limited O₂ transport
 - PA_{02} is constant = 100mmHg
 - At beginning of capillary Pa₀₂ = 40mmHg (mixed venous blood) → large partial pressure gradient → drives diffusion
 - As O_2 diffuses into pulmonary capillary blood \rightarrow increase in Pa_{O_2}
 - Hemoglobin binds $O_2 \rightarrow$ resists increase in $Pa_{02} \rightarrow$ initially gradient is maintained; eventually equilibrium is achieved \rightarrow perfusion-limitation
 - Therefore pulmonary blood flow determines net O₂ transfer (changes in pulmonary blood flow will affect net O₂ transfer)

Diffusion-limited O₂ transport

- Fibrosis → thickening of alveolar walls
 → increased diffusion distance for O₂
 (decreases DL) → slowed rate of diffusion
 → prevents equilibration → partial pressure gradient maintained along length of capillary
- Increasing capillary length allows for more time for equilibrium to occur \rightarrow diffusion-limitation

O_2 transport at high altitude

- High altitude reduces barometric pressure
 → reduced partial pressures
- Reductions in Pa₀₂ → reduce oxygen amount available to diffuse into blood → reduced rate of equilibration at capillary → more time required for gas exchange, lower peak oxygen concentration reached once equilibrated