GAS EXCHANGE \& LAWS

- Diffusion of oxygen $\left(\mathrm{O}_{2}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in lungs, peripheral tissues
- Alveolar O_{2} from inhaled gas \rightarrow pulmonary capillary blood \rightarrow circulation \rightarrow tissue capillaries \rightarrow cells
- CO_{2} from cells \rightarrow tissue capillaries \rightarrow circulation \rightarrow pulmonary capillary blood \rightarrow CO_{2} for exhalation from alveoli
- Gas exchange, gas behavior in solution is governed by fundamental physical gas properties \rightarrow represented by gas laws

FORMS OF GAS IN SOLUTION

Dissolved gas

- All gas in solution are to some extent carried in a freely dissolved form
- For given partial pressure, the higher
the solubility of a gas, the higher the concentration in solution
- In solution only dissolved gas molecules contribute to partial pressure
- Of the gases inspired as air, only nitrogen is exclusively carried in dissolved form

Bound gas

- $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{CO}$ are bound to proteins in blood
- $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{CO}$ can all bind to hemoglobin
- CO_{2} also binds to plasma proteins

Chemically modified gas

- The ready back and forth conversion of CO_{2} to bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$in presence of enzyme carbonic anhydrase allows CO_{2} to contribute to gas equilibria despite chemical conversion
- Majority of CO_{2} in blood carried as $\mathrm{HCO}_{3}{ }^{-}$

IDEAL (GENERAL) GAS LAW

osms.it/ideal-gas-law

- Relates multiple variables to describe state of a hypothetical "ideal gas" under various conditions
- Ideal gas: theoretical gas composed of many randomly moving point particles whose only interactions are perfectly elastic collisions
- All gas laws can be derived from general gas law
- PV = nRT
- $\mathrm{P}=$ Pressure (millimeters of mercury (mmHg)
- $\mathrm{V}=$ Volume (liters (L)
- $\mathrm{n}=$ Moles (mol)
- $\mathrm{R}=$ Gas constant ($8.314 \mathrm{~J} / \mathrm{mol}$)
- T = Temperature (Kelvin [K])
- In gas phase: body temperature, pressure (BTPS) used
- T = $37^{\circ} \mathrm{C} / 98.6^{\circ} \mathrm{F} / 310 \mathrm{~K}$
- $\mathrm{P}=$ Ambient pressure
- Gas is saturated with water vapor (47 mmHg)
- In liquid phase/solution: standard temperature, pressure (STPD) used
- $\mathrm{T}=0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} / 273 \mathrm{~K}$
$-\mathrm{P}=760 \mathrm{mmHg}$
- Dry gas (no humidity)
- Ideal gas law can be used to interconvert between properties of same gas under BTPS, STPD conditions
- E.g. gas volume $\left(V_{1}\right)$ at $B T P S ~ \rightarrow$ gas volume at STPD $\left(V_{2}\right)$
$V_{2}=V_{1} \times \frac{T_{1}}{T_{2}} \times \frac{P_{1}-P_{w 1}}{P_{2}-P_{w 2}}$
$V_{2}=V_{1} \times \frac{273}{310} \times \frac{760-47}{760-0}$
$V_{2}=V_{1} \times 0.826$

BOYLE'S LAW

osms.it/Boyles-law

- Describes how pressure of gas \uparrow as container volume \downarrow
- $P_{1} V_{1}=P_{2} V_{2}$
- For gas at given temperature, the product of pressure, volume is constant
- Inspiration \rightarrow diaphragm contraction $\rightarrow \uparrow$ lung volume
- If PV constant + lung volume $\uparrow \rightarrow$ pressure \downarrow
- Pressure $\downarrow \rightarrow$ disequilibrium between room, lung air pressures \rightarrow air fills lungs to equalize pressure

DALTON'S LAW

osms.it/Daltons-law

- Total pressure exerted by gaseous mixture = sum of all partial pressures of gases in mixture \rightarrow partial pressure of gas in gaseous mixture = pressure exerted by that gas if it occupied total volume of container
- $P_{x}=P_{B} \times F$
- $P x=$ partial pressure of gas (mmHg)
- $P_{B}=$ barometric pressure (mmHg)
- $F=$ fractional concentration of gas (no unit)
- Partial pressure = total pressure X fractional concentration of dry gas
- For humidified gases
- $P_{x}=\left(P_{B}-P_{H 2 O}\right) \times F$
- $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=$ Water vapor pressure at $37^{\circ} \mathrm{C} / 98.6^{\circ} \mathrm{F}(47 \mathrm{mmHg})$
- If the sum of partial pressures in a mixture = total pressure of mixture \rightarrow barometric pressure $\left(P_{B}\right)$ is sum of the partial pressures of $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{~N}_{2}$ (nitrogen), and $\mathrm{H}_{2} \mathrm{O}$
- At barometric pressure (760 mmHg) composition of humidified air is $\mathrm{O}_{2}, 21 \%$; $\mathrm{N}_{2}, 79 \% ; \mathrm{CO}_{2}, 0 \%$
- Within airways, air is humidified thus water vapor pressure is obligatory = to 47 mmHg at $37^{\circ} \mathrm{C} / 98.6^{\circ} \mathrm{F}$

HENRY'S LAW

osms.it/Henrys-law

- For concentrations of dissolved gases
- When gas is in contact with liquid \rightarrow gas dissolves in proportion to its partial pressure \rightarrow greater concentration of a particular gas, in gas phase \rightarrow more dissolves into solution at faster rate
- $C_{x}=P_{x} \times$ Solubility
- $\mathrm{C}_{\mathrm{x}}=$ concentration of dissolved gas (mL gas / 100mL blood)
- Concentration of gas in solution only applies to dissolved gas that is free in solution
- Concentration of gas in solution does not include any gas that is presently bound to any other dissolved substances (e.g. plasma proteins/ hemoglobin)
- $\mathrm{P}_{\mathrm{x}}=$ partial pressure of gas (mmHg)
- Solubility = solubility of gas in blood (mL gas / 100mL blood per mmHg)
- Henry's law governs gases dissolved within solution (e.g. $\mathrm{O}_{2}, \mathrm{CO}_{2}$ dissolved in blood)
- To calculate gas concentration in liquid phase
- Partial pressure of gas in gas phase \rightarrow partial pressure in liquid phase \rightarrow concentration in liquid
- Partial pressure of gas in liquid phase (at equilibrium) = partial pressure of gas in gaseous phase
- If alveolar air has PO_{2} of $100 \mathrm{mmHg} \rightarrow$ PO_{2} of capillary blood that equilibrates with alveolar air $=100 \mathrm{mmHg}$

HYPERBARIC CHAMBERS

- Hyperbaric chambers employ Henry's law
- Contain O_{2} gas pressurized to above 1 atm \rightarrow greater than normal amounts of O_{2} forced into the blood of the enclosed individual
- Used to treat carbon monoxide poisoning, gas gangrene due to anaerobic organisms (cannot live in presence of high concentrations of O_{2}), improve oxygenation of skin grafts, etc.

FICK'S LAWS OF DIFFUSION

osms.it/Ficks-law-of-diffusion

- Describes diffusion of gases
$V_{x}=\frac{D A \Delta P}{\Delta x}$
- $V_{x}=$ volume of gas transferred per unit time
- $D=$ gas diffusion coefficient
- $A=$ surface area
- $\Delta P=$ partial pressure difference of gas
- $\Delta x=$ membrane thickness
- Driving force of gas diffusion is difference
in partial pressures of gas $(\triangle P)$ across membrane (not the concentration difference)
- If $\mathrm{P}_{\mathrm{O} 2}$ of alveolar air $=100 \mathrm{mmHg}$
- P_{02} of mixed venous blood entering pulmonary capillary $=40 \mathrm{mmHg}$
- Driving force across membrane is $60 \mathrm{mmHg}(100 \mathrm{mmHg}-40 \mathrm{mmHg})$
- Diffusion coefficient of gas (D) is a combination of usual diffusion coefficient (dependent on molecular weight) and gas solubility
- Diffusion coefficient dramatically affects
diffusion rate, e.g. diffusion coefficient for CO_{2} is approximately $20 x$ greater than that of $\mathrm{O}_{2} \rightarrow$ for a given partial pressure difference CO_{2} would diffuse across the same membrane $20 x$ faster than O_{2}

LUNG DIFFUSION CAPACITY (DL)

- A functional measurement which takes into account
- Diffusion coefficient of gas used
- Membrane surface area
- Membrane thickness
- Time required for gas to combine with proteins in pulmonary capillary blood (e.g. hemoglobin)
- Measured using carbon monoxide (CO) \rightarrow CO transfer across alveolar-capillary barrier exclusively limited by diffusion process
- Lung diffusion capacity of carbon monoxide
$\left(\mathrm{DL}_{\mathrm{co}}\right)$ is measured using a single breath
- Individual breathes a mixture of gases with a low CO concentration \rightarrow rate of CO disappearance is predictable in different disease states
- Emphysema \rightarrow destruction of alveoli \rightarrow decreased surface area for gas exchange \rightarrow decreased $\mathrm{DL}_{\text {co }}$
- Fibrosis/pulmonary edema \rightarrow increase in membrane thickness (via fluid accumulation in the case of edema) \rightarrow decreased $\mathrm{DL}_{\mathrm{co}}$
- Anemia \rightarrow reduced hemoglobin \rightarrow reduced protein binding in a given time period \rightarrow decreased $\mathrm{DL}_{\mathrm{co}}$
- Exercise \rightarrow increased utilization of lung capacity, increased recruitment of pulmonary capillaries \rightarrow increased $\mathrm{DL}_{\mathrm{co}}$

GRAHAM'S LAW

osms.it/Grahams-law

- Diffusion rate of gas through porous membranes varies inversely with the square root of its density
- To compare rate of effusion (movement through porous membrane) of two gases \rightarrow velocity of molecules determine the rate of spread
- Kinetic temperature in kelvin of a gas is directly proportional to average kinetic energy of gas molecules \rightarrow at the same temperature, molecule of heavier gas will have a slower velocity than those of lighter gas
- Kinetic energy $=1 / 2 m v 2$
- $1 / 2 m_{1} v_{1}^{2}=1 / 2 m_{2} v_{2}^{2}$
- $v_{1}^{2} / v_{2}^{2}=m_{2} / m_{1}$
- $v_{1} / v_{2}=\sqrt{ }\left(m_{2} / m_{1}\right)$
- Which can be rewritten to give Graham's law

$$
\frac{\text { Rate }_{1}}{\text { Rate }_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

GAS EXCHANGE IN THE LUNGS

osms.it/gas-exchange-in-lungs

PULMONARY GAS EXCHANGE

- AKA external respiration
- Pulmonary capillaries perfused with blood from right heart (deoxygenated)
- Gas exchange occurs between pulmonary capillary, alveolar gas
- Room air \rightarrow inspired air \rightarrow humidified tracheal air \rightarrow alveoli
- O_{2} diffuses from alveolar gas \rightarrow pulmonary capillary blood
- CO_{2} diffuses from pulmonary capillary blood \rightarrow alveolar gas
- Blood exits the lungs \rightarrow left heart \rightarrow systemic circulation

Dry inspired air

- $\mathrm{P}_{\mathrm{O} 2}$ is approximately 160 mmHg
- Barometric pressure \times fractional concentration of O_{2} (21\%)
- $\mathrm{P}_{\mathrm{O2}}=760 \mathrm{mmHg} \times 0.21$
- Assume no CO_{2} in dry inspired air

Humidified tracheal air

- P_{02} of humidified tracheal air is 150 mmHg
- Air is fully saturated with water vapor
\rightarrow "dilution" of partial pressures \rightarrow calculations must correct for water vapor pressure (subtracted from barometric pressure)
- At $37^{\circ} \mathrm{C} / 98.6^{\circ} \mathrm{F}, \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$ is 47 mmHg
- $P_{02}=(760 \mathrm{mmHg}-47 \mathrm{mmHg}) \times 0.21$
- Assume no CO_{2} in humidified inspired air

Alveolar air

- Pressures of alveolar gas designated "PA"
- Alveolar gas exchange in lungs sees a drop in O_{2} partial pressure, increase in CO_{2} partial pressure
- $\mathrm{PA}_{\mathrm{O} 2}=100 \mathrm{mmHg}$
- $\mathrm{PA}_{\mathrm{CO2}}=40 \mathrm{mmHg}$
- Amount of these gases entering/leaving alveoli correspond to physiological body needs (i.e. O_{2} consumption, CO_{2} production)

Pulmonary capillaries

- Blood entering pulmonary capillaries is mixed venous blood
- Tissues (metabolic activity alters composition of blood) \rightarrow venous vasculature \rightarrow right heart \rightarrow pulmonary circulation
- $P_{02}=40 \mathrm{mmHg}$
- $\mathrm{P}_{\mathrm{CO2}}=46 \mathrm{mmHg}$

Systemic arterial blood (oxygenated)

- Gas partial pressures of systemic arterial blood designated "Pa"
- In a healthy individual, diffusion of gas across alveolar, capillary membrane is so rapid that we can assume equilibrium is achieved between alveolar gases, pulmonary capillaries $\rightarrow P_{\mathrm{O} 2}$ and $\mathrm{P}_{\mathrm{CO} 2}$ of blood leaving pulmonary capillaries = alveolar air
- $\mathrm{PA}_{\mathrm{O} 2}=\mathrm{Pa}_{\mathrm{O} 2}=100 \mathrm{mmHg}$
- $\mathrm{PA}_{\mathrm{CO} 2}=\mathrm{Pa}_{\mathrm{CO} 2}=40 \mathrm{mmHg}$
- This blood enters systemic circulation to eventually return to lungs

Physiological shunt

- Small fraction of pulmonary blood flow bypasses alveoli \rightarrow physiological shunt \rightarrow blood not arterialized \rightarrow systemic blood has slightly lower P_{02} than alveolar air
- Shunting occurs due to
- Coronary venous blood, drains directly into left ventricle
- Bronchial blood flow
- Shunting may be increased in various pathologies \rightarrow ventilation-perfusion defects/mismatches
- As shunt size increases \rightarrow alveolar gas, pulmonary capillary blood do not equilibrate \rightarrow blood is not fully arterialized
- A-a difference: difference in P_{02} between alveolar gas (A), systemic arterial blood (a)
- Physiological shunting \rightarrow negligible/ small differences
- Pathology \rightarrow notably increased difference

FACTORS AFFECTING EXTERNAL RESPIRATION

Thickness of respiratory membrane

- In healthy lungs, respiratory membrane \rightarrow 0.5-1 micrometer thick
- Presence of small amounts of fluid (left heart failure, pneumonia) \rightarrow significant loss of efficiency, equilibration time dramatically increases \rightarrow the 0.75 seconds blood cells spend in transit through pulmonary circulation may not be sufficient

Surface area of respiratory membrane

- Greater surface area of respiratory membrane \rightarrow greater amount of gas exchange
- Healthy adult male lungs have surface area of $90 \mathrm{~m}^{2}$
- Pulmonary diseases (e.g. emphysema) \rightarrow walls of alveoli break down \rightarrow alveolar chambers enlarge \rightarrow loss of surface area
- Tumors/pneumonia \rightarrow prevent gas from occupying all available lung \rightarrow loss of surface area

Partial pressure gradients and gas solubilities

- Partial pressures of $\mathrm{O}_{2}, \mathrm{CO}_{2}$ drive diffusion of these gases across respiratory membrane
- Steep O_{2} partial pressure gradient exists
- PO_{2} of deoxygenated blood in pulmonary arteries $=40 \mathrm{mmHg}$
- PO_{2} of 104 mmHg in alveoli
- O_{2} diffuses rapidly from alveoli into pulmonary capillary blood
- O_{2} equilibrium (PO_{2} of 104 mmHg on both sides of respiratory membrane) occurs in around 0.25 seconds of transit through lungs (about $1 / 3$ of the time available)
- CO_{2} has smaller gradient $\rightarrow 5 \mathrm{mmHg}$ $(45 \mathrm{mmHg}$ vs 40 mmHg), although pressure gradient for O_{2} is much steeper than for $\mathrm{CO}_{2}, \mathrm{CO}_{2}$ is $20 \times$ more soluble in plasma, alveolar fluid than $\mathrm{O} 2 \rightarrow$ equal amounts of gas exchanged

Ventilation-perfusion coupling

- Ventilation: amount of gas reaching alveoli
- Perfusion: amount of blood flow in pulmonary capillaries
- These are regulated by local autoregulatory
mechanisms \rightarrow continuously respond to local conditions \rightarrow some control in blood flow around lungs
- Arteriolar diameter controlled by P_{02}
- If alveolar ventilation is inadequate \rightarrow blood taking O_{2} away faster than ventilation can replenish it \rightarrow low local $\mathrm{P}_{\mathrm{O2}} \rightarrow$ terminal arteriole restriction \rightarrow blood redirected to respiratory areas with high $\mathrm{P}_{\mathrm{O} 2}$, oxygen pickup more efficient
- In alveoli where ventilation is maximal \rightarrow high $\mathrm{P}_{\mathrm{O} 2} \rightarrow$ pulmonary arteriole dilation \rightarrow blood flow into pulmonary arterioles increases
- Pulmonary vascular muscle autoregulation is opposite of that in systemic circulation
- Bronchiolar diameter controlled by $\mathrm{P}_{\mathrm{CO} 2}$
- Bronchioles connecting areas where $\mathrm{PA}_{\mathrm{CO} 2}$ high \rightarrow dilation \rightarrow allows CO_{2} to be eliminated from body
- Those with low $\mathrm{CO}_{2} \rightarrow$ constrict
- Independent autoregulation of arterioles, bronchioles \rightarrow matched perfusion, ventilation
- Ventilation-perfusion matching is imperfect
- Gravity \rightarrow regional variation in blood, air flow (apices have greater ventilation but lesser perfusion, bases have greater perfusion, lesser ventilation)
- Occasionally alveolar ducts may be plugged with mucus \rightarrow unventilated areas

INTERNAL RESPIRATION

- Capillary gas exchange in body tissue
- Partial pressures, diffusion gradients are reversed from lungs however physical laws governing the exchanges remain identical
- Cells in body continuously use O_{2}, produce CO_{2}
- PO_{2} always lower in tissue than arterial blood $(40 \mathrm{mmHg}$ vs 100 mmHg$) \rightarrow \mathrm{O}_{2}$ moves rapidly from blood \rightarrow tissues until equilibrated
- CO_{2} moves rapidly down its pressure gradient ($\mathrm{P}_{\mathrm{CO} 2}$ of 40 mmHg in fresh blood arriving at capillary beds beds vs. $P_{\mathrm{CO} 2}$ of 45 mmHg in tissues) \rightarrow venous blood \rightarrow right heart
- Gas exchange at tissue level driven by partial pressures, occurs via simple diffusion

DIFFUSION-LIMITED \& PERFUSIONLIMITED GAS EXCHANGE

osms.it/diffusion-limited-perfusion-limited-gas-exchange

Diffusion-limited gas exchange

- Diffusion is limiting factor determining total amount of gas transported across alveolarcapillary barrier
- As long as partial pressure gradient is maintained, diffusion continues
- Gas readily diffuses across permeable membrane
- Blood flow away from alveoli/chemical binding \rightarrow partial pressure of gas on systemic end does not rise \rightarrow partial pressure maintenance
- Given a sufficiently long capillary bed diffusion will continue along entire length as equilibrium is not achieved
- Examples include
- CO across alveolar-pulmonary capillary barrier
- Oxygen during strenuous exercise/ emphysema/fibrosis

Perfusion-limited gas exchange

- Perfusion (blood flow) is the limiting factor determining total amount of gas transported across alveolar-capillary barrier
- Increasing blood flow \rightarrow increasing amount gas transported; examples include
- Nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$): not bound in blood \rightarrow entirely free in solution; $\mathrm{PA}_{\mathrm{N} 2 \mathrm{O}}$ is constant, $\mathrm{Pa}_{\mathrm{N} 2 \mathrm{O}}=$ zero at start of capillary \rightarrow initial large A-a difference \rightarrow because no $\mathrm{N}_{2} \mathrm{O}$ binds to any other components of blood, all of it remains free in solution \rightarrow partial pressure builds rapidly \rightarrow rapid equilibration, most of capillary length does not participate in gas exchange; new blood must be supplied to partake in further
gas exchange with alveolar $\mathrm{N}_{2} \mathrm{O} \rightarrow$ "perfusion-limited gas exchange"
- O_{2} at rest
$-\mathrm{CO}_{2}$

Limitations of O_{2} transport

- Under physiological conditions O_{2} transport into pulmonary capillaries \rightarrow perfusionlimited
- Diseased or abnormal conditions \rightarrow diffusion-limited
- Perfusion-limited O_{2} transport
$\square \mathrm{PA}_{02}$ is constant $=100 \mathrm{mmHg}$
- At beginning of capillary $\mathrm{Pa}_{02}=$ 40 mmHg (mixed venous blood) \rightarrow large partial pressure gradient \rightarrow drives diffusion
- As O_{2} diffuses into pulmonary capillary blood \rightarrow increase in Pa_{02}
- Hemoglobin binds $\mathrm{O}_{2} \rightarrow$ resists increase in $\mathrm{Pa}_{\mathrm{O} 2} \rightarrow$ initially gradient is maintained; eventually equilibrium is achieved \rightarrow perfusion-limitation
- Therefore pulmonary blood flow determines net O_{2} transfer (changes in pulmonary blood flow will affect net O_{2} transfer)

Diffusion-limited O_{2} transport

- Fibrosis \rightarrow thickening of alveolar walls \rightarrow increased diffusion distance for O_{2} (decreases DL) \rightarrow slowed rate of diffusion \rightarrow prevents equilibration \rightarrow partial pressure gradient maintained along length of capillary
- Increasing capillary length allows for more time for equilibrium to occur \rightarrow diffusionlimitation
O_{2} transport at high altitude
- High altitude reduces barometric pressure \rightarrow reduced partial pressures
- Reductions in $\mathrm{Pa}_{\mathrm{O} 2} \rightarrow$ reduce oxygen amount available to diffuse into blood \rightarrow reduced rate of equilibration at capillary \rightarrow more time required for gas exchange, lower peak oxygen concentration reached once equilibrated

