

NOTES CARDIOMYOPATHY

GENERALLY, WHAT IS IT?

PATHOLOGY & CAUSES

DIAGNOSIS

Broad term, describes any issue resulting from disease of myocardium

- Primary cardiomyopathy: issue develops of its own accord
- Secondary cardiomyopathy: issue develops as compensation for another underlying disease

RISK FACTORS

Positive family history

COMPLICATIONS

 Heart failure, arrhythmias, sudden cardiac death

SIGNS & SYMPTOMS

- Can be asymptomatic
- Heart failure signs, symptoms
- Heart murmurs

DIAGNOSTIC IMAGING

- Chest X-ray
- Echocardiogram/cardiac MRI

OTHER DIAGNOSTICS

ECG

TREATMENT

MEDICATIONS

See individual diseases

SURGERY

- Implantable cardioverter-defibrillator (ICD)
- Heart transplant

OTHER INTERVENTIONS

Lifestyle changes

NOTES

DILATED CARDIOMYOPATHY

osms.it/dilated-cm

PATHOLOGY & CAUSES

- Dilation of all four chambers of heart
- Most common type of cardiomyopathy
 - New sarcomeres added in series, creates larger chambers with relatively weak walls, less muscle for contraction
 → low systolic function
 - \circ Chambers stretch \rightarrow valves stretch \rightarrow blood regurgitates back into atria

CAUSES

• Primary dilated cardiomyopathy most often idiopathic

Genetic mutations/conditions

• Duchenne muscular dystrophy (DMD), hemochromatosis

Myocarditis

 Can progress from myocarditis to dilated cardiomyopathy

Infection

- Coxsackievirus B: leads to myocarditis, heart muscle inflammation
- Chagas disease: protozoal infection

Linked to alcoholism

• Alcohol, metabolites have direct toxic effect on heart muscle

Linked to certain drugs

- Chemotherapy: doxorubicin, daunorubicin
- Cocaine

Wet beriberi

- Beriberi: illness caused by thiamine (vitamin B1) deficiency
- Wet beriberi: affects heart; ↓ thiamine levels impair myocardium energy production

Peripartum cardiomyopathy

• Can develop in third trimester of pregnancy/ weeks after delivery

- Related to pregnancy-associated hypertension
- Half of individuals recover following pregnancy

Sarcoidosis

- Growth of granulomas in heart \rightarrow dilation

RISK FACTORS

• Alcoholism, past family history of diseases implicated in DMD

COMPLICATIONS

- Systolic heart failure
 Valve regurgitation: as chambers
 - stretch, so do valves
- Arrhythmias: stretching muscle irritates conduction system

MNEMONIC: ID BIG MAPS

Causes of Dilated Cardiomyopathy

- Idiopathic Drugs/Doxorubicin (and cocaine) Beriberi (wet) Infection Genetic Myocarditis
- Alcoholism
- Peripartum cardiomyopathy
- **S**arcoidosis

SIGNS & SYMPTOMS

- Fatigue, dyspnea
- Lateral displaced point of maximum impulse (PMI)
- Chest pain on exertion
- Holosystolic murmur (mitral valve regurgitation during systole)
- S3 sound (blood rushing into, slamming into dilated ventricular wall during diastole)

DIAGNOSIS

DIAGNOSTIC IMAGING

X-ray

• Cardiomegaly, pulmonary edema, pleural effusion

OTHER DIAGNOSTICS

ECG

• Shows ventricular dilation, reduced ejection fraction

Figure 6.1 Gross pathology of dilated cardiomyopathy. Note the large ventricles and thin ventricular walls.

TREATMENT

MEDICATIONS

- Angiotensin-converting-enzyme (ACE) inhibitor, angiotensin receptor blocker, beta blocker
 - Slows disease progression

SURGERY

Heart transplant (extreme cases)

OTHER INTERVENTIONS

 Left ventricular assist device (LVAD): mechanical pump assists heart in delivering blood to body

Figure 6.2 A chest radiograph demonstrating enlargement of the heart due to dilated cardiomyopathy. The heart occupies more than half the width of the chest.

HYPERTROPHIC CARDIOMYOPATHY (HCM)

osms.it/hypertrophic-cm

PATHOLOGY & CAUSES

- Myocardium becomes thick, heavy, hypercontractile
- Myocytes become disorganized, new sarcomeres added in parallel to existing ones
- Left ventricle most often affected
 - Muscle growth asymmetrical → interventricular septum grows larger relative to free wall
- Hypertrophy → walls taking up more space, ↓ blood fills ventricle
 - Walls become stiff, less compliant → less filling → low stroke volume → dysfunction in diastolic filling of left ventricle → diastolic heart failure
- Arrhythmias: larger muscles require more oxygen, coupled with heart having difficulty delivering blood to tissues → ischemia → arrhythmias

CAUSES

Genetic missense mutation, inherited as autosomal dominant trait

- Different genetic mutations affect different sarcomere proteins
- Friedreich's ataxia: autosomal recessive neurodegenerative disease

Hypertrophic obstructive cardiomyopathy (subtype)

 Interventricular septum growth blocks left ventricular outflow tract during systole
 → blood must flow quickly through small opening, ↓ pressure in this area (Venturi effect) → low pressure pulls anterior leaflet of mitral valve toward septum → further mitral valve obstruction towards septum → further obstruction overall

COMPLICATIONS

• Arrhythmias, sudden cardiac death

RISK FACTORS

 Positive family history of HCM/conditions known to be associated with HCM (e.g. Friedreich's ataxia)

SIGNS & SYMPTOMS

- Many individuals asymptomatic
- Auscultation: crescendo-decrescendo murmur
 - intensity with ↓ venous return
 (Valsalva, standing), ↓ in intensity with ↑
 venous return (handgrip, squatting)
- Symptoms arise as complications arise
 - Dyspnea: left ventricle stiffening, atrium increasing back pressure into lungs → interstitial lung congestion
 - Fatigue
 - Exertional chest pain: ischemia
 - Syncope with exertion: brain receiving low oxygen
 - Palpitations: ischemia, arrhythmias
 - Sudden cardiac death
- May exhibit bifid pulse: two pulses felt
 - Mitral valve moves toward outflow tract
 → ↑ obstruction mid-systole

DIAGNOSIS

DIAGNOSTIC IMAGING

Echocardiography/cardiac MRI

Enlarged heart chambers/↓ ejection fraction

Chest X-ray

↑ ratio of distance between heart, thoracic cage

LAB RESULTS

Genetic testing

Cardiomegaly-implicated gene mutations

OTHER DIAGNOSTICS

ECG

• Detectable electrical changes, such as left ventricular hypertrophy

TREATMENT

MEDICATIONS

Beta blockers

• ↓ heart rate, contractile force

Calcium channel blockers

- If beta blockers not tolerated
- Slows down heart rate

Figure 6.3 Gross pathology of hypertrophic cardiomyopathy. The myocardium has become so enlarged that both ventricles are almost entirely obliterated.

Disopyramide

• Can be used for its negative inotropic properties

Digoxin contraindicated

• \uparrow force of contraction, can \uparrow obstruction

SURGERY

Implantable cardioverter-defibrillator

Surgical septal myectomy

 Involves removing portion of interventricular septum, ↓ obstruction

Septal ablation

 Chemical myomectomy to partially ablate septum

Heart transplant

• If unresponsive to all other forms of treatment

OTHER INTERVENTIONS

Lifestyle change

Cessation of high-intensity athletics

Figure 6.4 The histological appearance of the myocardium in a case of hypertrophic cardiomyopathy. There is complete myocyte disarray. The myocytes display bizarre forms with side to side branching and are arranged in a whorled configuration.

Figure 6.5 Illustration showing the Venturi effect: low blood pressure pulls the anterior leaflet of the mitral valve towards the septum, creating an obstruction. Blood can't get through the small opening, leading to a crescendo-descrescendo heart murmur.

RESTRICTIVE CARDIOMYOPATHY

osms.it/restrictive-cm

PATHOLOGY & CAUSES

- Cardiomyopathy: heart wall is rigid, has difficulty stretching, pumping
- Ventricles restrict filling, \downarrow cardiac output

CAUSES

• Infiltrative diseases, storage diseases, endomyocardial diseases.

Amyloidosis

- Amyloids are misfolded proteins → insoluble → deposit in tissues, organs → organs less compliant
- Familial amyloid cardiomyopathy
- Mutant transthyretin (TTR) protein; misfolded deposits preferentially in heart tissue
- Senile cardiac amyloidosis; TTR protein/ wild type TTR deposits in heart over time

Sarcoidosis

Immune cell collections form granulomas in

heart tissue

Endocardial fibroelastosis

• Fibrosis develops in endocardium (inner lining of heart) and subendocardium (layer underneath endocardium)

Loffler syndrome

- Eosinophils accumulate in lung tissue
- Loeffler endocarditis/Loeffler endomyocarditis: eosinophils also accumulate in endocardial layer of heart tissue → inflammation, endocardial fibrosis → restrict heart tissue

Hemochromatosis

 Iron deposits in heart tissue, contributes to restricted tissue

Other causes

- Heart tissue radiation
 - Radiation generates reactive oxygen species → inflammation over time → myocardial fibrosis → tissue stiff,

restrictive

COMPLICATIONS

- Can \rightarrow diastolic heart failure
 - Stiff ventricles \rightarrow cannot stretch \rightarrow less filling \rightarrow low cardiac output \rightarrow heart failure

MNEMONIC: LASHER Causes of Restrictive

cardiomyopathy Loffler syndrome Amyloidosis Sarcoidosis Hemochromatosis Endocardial fibroelastosis post-Radiation

SIGNS & SYMPTOMS

- Auscultation: stiff ventricle \rightarrow S4 heart sound
- Presents as congestive heart failure: dyspnea; paroxysmal nocturnal dyspnea; orthopnea; crackles; intraalveolar hemorrhage; fatigue; inability to exercise; appetite loss; abdomen swelling; swelling of feet, ankles; uneven/rapid pulse; chest pain; low urine output; nocturia

DIAGNOSIS

OTHER DIAGNOSTICS

ECG

- Low-amplitude signals: peak to nadir measurement of QRS complex being < 5mm (limb leads)/< 10mm (precordial leads). Low voltage produced due to loss of viable myocardium
- Small QRS complexes: QRS complexes represent ventricular contraction, restricted tissue → weaker contraction

Figure 6.6 Histological appearance of the myocardium in a case of cardiac amyloidosis; a cause of restrictive cardiomyopathy. Cardiac myocytes (dark purple) are surrounded by amyloid deposits (light pink).

TREATMENT

MEDICATIONS

Loop diuretics

■ ↓ systemic, pulmonary congestion

Beta-blocker, calcium channel blocker, angiotensin converting enzyme inhibitors

■ Slows heart rate, ↑ ventricular-filling time

SURGERY

Heart transplant

CARDIOMYOPATHY TYPES

	DILATED	HYPERTROPHIED	RESTRICTED
ETIOLOGY	Genetic, infectious, alcoholic, peripartum	Genetic	Infiltrative and storage diseases; endomyocardial disease
PATHOLOGY	Large chambers, relatively weak wall	Asymmetric myocardial growth; markedly thick walls, overgrowth of septum	Rigid, noncompliant heart wall resists filing
VENTRICULAR DYSFUNCTION	Impaired systolic contraction	Impaired diastolic relaxation; hyperdynamic systolic function	Impaired diastolic relaxation; normal systolic function
HEART SOUNDS	S3	S4	S4
VALVULAR INCOMPETENCE	AV valves; especially mitral	Mitral valves	AV valves
ECG	Atrial fibrillation, ventricular tachycardia	Atrial fibrillation; ventricular fibrillation	Low amplitude signals; small QRS signals; AV block
CXR	Enlarged cardiac silhouette (ballooned); pulmonary venous congestion	Normal to enlarged cardiac silhouette	Usually normal cardiac silhouette
ECHOCARDIOGRAM	Decreased LV wall thickness; LV ejection fraction decreased	Hypertrophied LV; LV outflow obstruction; mitral regurgitation; LV ejection fraction normal to increased	Enlarged right atrium; LV ejection fraction decreased; infiltrative disorders cause "speckled" appearance
CLINICAL PEARL	Increased risk of thromboembolic events	May lead to sudden death in young athletes	JVD may manifest as Kussmaul's sign