NOTES

NOTES MALABSORPTION CONDITIONS

GENERALLY, WHAT ARE THEY?

PATHOLOGY & CAUSES

- Impaired ability of gastrointestinal tract to absorb nutrients
- Malabsorption may be
 - \circ Global \rightarrow impaired function of intestinal cells
 - \circ Partial \rightarrow external agent interferes with absorption
- Manifestation of underlying illness; may be congenital/acquired/infectious

CAUSES

- Defects in absorption process of intestinal cells (e.g. change to bowel surface area)
- Impaired nutrient digestion (e.g. altered digestive enzymes)

SIGNS & SYMPTOMS

- Abdominal distention, pain
- Chronic diarrhea, malabsorption, dehydration
- Weight loss
- Clinical manifestations of nutritional deficiencies (e.g. paresthesias from cobalamin deficiency)

DIAGNOSIS

DIAGNOSTIC IMAGING

 Abdominal ultrasound, colonoscopy, intestinal biopsy, serological markers

LAB RESULTS

- D-xylose test
 - Test for carbohydrate malabsorption
- Fecal fat testing
- Complete blood count (CBC)
 Look for for infection, anemia

OTHER DIAGNOSTICS

- Individual history
 - Pancreatitis
 - Recent surgeries
 - Symptoms of vitamin deficiency
 - Family history

TREATMENT

See individual disorders

CELIAC DISEASE

osms.it/celiac-disease

PATHOLOGY & CAUSES

- Autoimmune disorder of small intestine
- AKA gluten-sensitive enteropathy/ nontropical sprue

CAUSES

- Triggered by foods containing gliadin, a peptide found in foods containing gluten (e.g. grains: wheat, barley, rye, oats)
 - Gluten consumption \rightarrow degradation into peptides in small intestine \rightarrow secretory IqA binds to gliadin in duodenum \rightarrow IgA-gliadin complex binds to transferrin receptor \rightarrow IgA-gliadin complex travels across enterocyte into lamina propria \rightarrow tissue transglutaminase deaminates gliadin \rightarrow macrophages uptake, present deaminated gliadin in MHC-2 molecules HLA-DQ 2, $8 \rightarrow$ CD4+ activation \rightarrow inflammatory cytokines released (interferon gamma, tumor necrosis factor) \rightarrow damage/destruction of intestinal villi \rightarrow B cell activation \rightarrow antigliadin, anti-tissue transglutaminase, antiendomysial antibodies released \rightarrow CD8+ cell activation \rightarrow tissue destruction
- On microscopy
 - Villous atrophy, mucosal inflammation, intestinal crypt hyperplasia
- Presence of anti-gliadin, anti-endomysium
 IgA = pathognomonic

RISK FACTORS

• Northern European ancestry, genetic component

SIGNS & SYMPTOMS

- Abdominal distention, chronic diarrhea (steatorrhea)
- Failure to thrive (children)
- Dermatitis herpetiformis
 - Circulating IgA antibodies attack dermal papillae → generalized rash

DIAGNOSIS

LAB RESULTS

- Anti-gliadin IgA/IgG
- Anti-endomysium IgA
- Anti-tissue transglutaminase IgA
 - Tissue transglutaminase: endomysial enzyme released in response to cellular stress
 - More sensitive, specific

Duodenal biopsy

• Showing lymphocytic infiltration, villous atrophy, crypt hyperplasia

TREATMENT

OTHER INTERVENTIONS

Correct nutritional deficiencies related to malabsorption

Preventative

Gluten-free diet

MNEMONIC: Grains are BROWn Grains to avoid with Colic

Grains to avoid with Celiac disease Barley

Rye Oats

Wheat

Figure 38.2 Clinical appearance of dermatitis herpetiformis. Individual with celiac disease are at increased risk of this condition.

Figure 38.1 Histological appearance of a duodenal biopsy in an individual with celiac disease. There is villous blunting, an expansion of the lamina propria by chronic inflammatory cells and an increase in crypt length. A higher magnification would reveal an increase in lymphocyte count in the surface epithelium.

LACTOSE INTOLERANCE

osms.it/lactose-intolerance

PATHOLOGY & CAUSES

- Decreased ability to digest lactose
- Lactose consumption → lactase deficiency/ inactivity → ↑ undigested lactose → fermentation by colonic flora → gas, osmotically active substances produced → bloating, diarrhea

CAUSES

• Most often acquired due to physiologic weaning off of milk

RISK FACTORS

- Non-European ancestry (most common)
- Increases with age
- May be congenital
 - Rare, autosomal recessive disorder
- May be developmental
 - Most common among premature infants
- Underlying intestinal disease

SIGNS & SYMPTOMS

- Occur after consuming lactose (e.g. milk, cheese)
- Abdominal pain, cramping in lower quadrants
- Abdominal distention, flatulence, vomiting, diarrhea (more common in children)

DIAGNOSIS

Based on above symptoms

LAB RESULTS

- Unabsorbed carbohydrates \rightarrow high stool osmotic gap
- Bacterial lactose fermentation \rightarrow acidic stool pH

TREATMENT

OTHER INTERVENTIONS

• Optimize calcium, vitamin D intake

Preventative

Lactose-free diet
 Compensate with lactase

SMALL BOWEL BACTERIAL OVERGROWTH SYNDROME

osms.it/sbbos

PATHOLOGY & CAUSES

- Excessive colonic bacteria colonizing small intestine
- Often occurs secondary to conditions limiting intestinal motility, gastric acid and bile secretion and IgA deficiencies

CAUSES

- Alteration of factors regulating intestinal flora → aerobic bacteria proliferation → changes in aerobic microclimate of small intestine → migration of colonic anaerobic bacteria → damage to intestinal surface → maldigestion, malabsorption → symptoms
 - ↑ bacteria → ↑ carbohydrate metabolism
 → ↑ gas production → bloating
 - ↑ bacteria → bile acid inactivation → ↑ fat in colon → osmotic effect → diarrhea
 - \uparrow bacteria \rightarrow intrinsic factor degradation \rightarrow impaired B₁₂ absorption \rightarrow B₁₂ deficiency

RISK FACTORS

Increases with age

SIGNS & SYMPTOMS

- Abdominal pain/distention, chronic diarrhea, flatulence
- Tympanitic abdomen upon percussion

- Altered mental status after high carbohydrate meal
- Failure to thrive (children)

DIAGNOSIS

LAB RESULTS

- Signs/symptoms of vitamin, electrolyte abnormalities
 - \circ Weakness, ataxia, paresthesias \rightarrow $\rm B_{_{12}}$ deficiency
 - \circ Perioral numbress, feet paresthesias, muscle cramping \rightarrow calcium deficiency
- Anemia
 - Macrocytic $\rightarrow B_{12}$ deficiency
 - Microcytic \rightarrow chronic bleeding
- Fecal fat testing
- Lactulose/glucose breath testing
- Jejunal aspirate, culture
 - $\circ > 10^3$ colony forming units

OTHER DIAGNOSTICS

- Individual history
 - Chronic pancreatitis, intestinal surgery, Gl neuropathy

TREATMENT

MEDICATIONS

Antibiotics

TROPICAL SPRUE

osms.it/tropical-sprue

PATHOLOGY & CAUSES

• Gastrointestinal disease of uncertain etiology resulting in nutrient malabsorption

CAUSES

 Acute intestinal infection (viral/bacterial/ protozoan) → damaged intestinal lining → inflammation → enteroglucagon secretion → decreased intestinal motility → increased intestinal transit time → overgrowth of Klebsiella, E. coli, Enterobacter → production of toxic fermentation byproducts → further inflammation → villous atrophy → malabsorption → depletion of folate, B₁₂ → intestinal villi can't function normally → further intestinal injury, megaloblastic anemia

RISK FACTORS

• Most common in individuals living in tropical regions

SIGNS & SYMPTOMS

• Diarrhea, weight loss, dehydration, abdominal pain, fatigue, megaloblastic anemia

DIAGNOSIS

DIAGNOSTIC IMAGING

Endoscopy

Barium swallow

Shows intestinal wall thickening

LAB RESULTS

- Fecal fat test
- D-xylose test
- Jejunal biopsy

Shows villous atrophy, inflammation

TREATMENT

MEDICATIONS

- Antibiotics \rightarrow reduce bacterial overgrowth
- Replace folate, B₁₂

WHIPPLE'S DISEASE

osms.it/whipples-disease

PATHOLOGY & CAUSES

- Rare, malabsorptive infectious disease caused by Tropheryma whipplei
- Pathognomonic finding → lamina propria displays numerous macrophages with periodic acid-Schiff (PAS) positive intracellular material

CAUSES

- Tropheryma whipplei
 - Gram-positive, non-acid fast, PAS positive bacillus; ubiquitous in environment
 - Fecal-oral transmission
- Readily spreads throughout body, causing multisystem effects
 - Evades immune response → allows for accumulation of bacilli in tissues
- Current hypothesis suggests host immunodeficiency as predisposing factor

RISK FACTORS

 Middle-aged biological males of European ancestry; exposure to fecal matter (sewage workers, farmers)

MNEMONIC: WHIPPLES

Features of Whipple's disease

Weight loss

Hyperpigmentation of skin Infection with tropheryma whippelii

- **P**AS positive granules in macrophage
- **P**olyarthritis
- Lymphadenopathy
- Enteric involvement
- **S**teatorrhea

SIGNS & SYMPTOMS

- Four cardinal signs
 - Diarrhea, weight loss, abdominal pain, arthralgias
- Endocarditis, pericarditis, myocarditis
- Skin hyperpigmentation
- Pleural disease

DIAGNOSIS

LAB RESULTS

- Biopsy
 - Shows copious PAS positive macrophages invading lamina propria in intestine
- ≥ two positive PCR/PAS tests
- Immunohistochemistry for T. whipplei
- Laboratory findings suggesting chronic inflammation, nutritional deficits

TREATMENT

MEDICATIONS

- Start with IV antibiotics \rightarrow ceftriaxone/ penicillin G
- Trimethoprim-sulfamethoxazole (1 year)

Figure 38.3 Histological appearance of the duodenum in a case of Whipple's disease. The lamina propria is occupied by numerous foamy macrophages. Electron microscopy would reveal numerous membrane bound bacilli.

Figure 38.4 Histological appearance of a duodenal biopsy with the special stain DPAS (diastase periodic acid-Schiff). This stain highlights diastase resistant mucin within the foamy macrophages residing in the lamina propria. The mucin within goblet cells is also positively stained.