NOTES

NOTES BLOOD COMPONENTS & FUNCTION

BLOOD COMPONENTS

osms.it/blood-components

BLOOD COMPONENT SEPARATION

- Blood components separate by density in centrifuge
 - Heaviest layer: erythrocytes
 - Middle layer: buffy coat
 - Lightest layer: plasma

ERYTHROCYTES

- Comprise 45% (hematocrit) of total blood volume
- Carry O₂ to tissues; bring CO₂ to lungs
- Biconcave discs (depressed center)
 - Fit through vessels,
 † surface area (for gas exchange)
- No organelles
 - $\circ \uparrow$ space for hemoglobins

BUFFY COAT

- Comprises < 1% of total blood volume
- Contains platelets, leukocytes
- Platelets clump together → seal damaged blood vessels
- Leukocytes ward off pathogens, destroy cancer cells, neutralize toxins

PLASMA

- Comprises 55% of total blood volume
- No cells: 90% water + proteins, electrolytes, gases
- Albumin: maintains oncotic pressure, acts as transport protein
- Globulins: antibodies, transport proteins
- Fibrinogen: involved in clot formation (helps platelets attach)
- Electrolytes: include sodium, potassium, calcium, chloride, carbonate

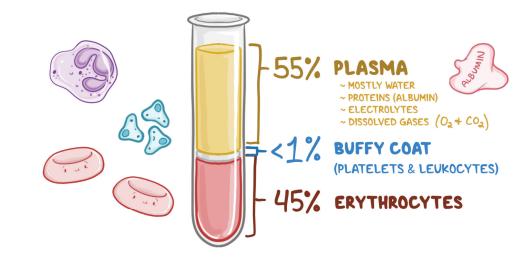


Figure 43.1 Blood components and their relative proportions.

PLATELET PLUG FORMATION (PRIMARY HEMOSTASIS)

osms.it/platelet-plug-formation-primary-hemostasis

- Hemostasis: blood-loss prevention
- First two hemostasis steps: platelets clump, form plug around injury site in five steps

PLATELET PLUG FORMATION STEPS

1. Endothelial injury

- Nerves, smooth muscle cells detect injury
- Trigger reflexive contraction of vessel (vascular spasm) → ↓ blood flow, loss
- Secretion of nitric oxide, prostaglandins stop; secretion of endothelin begins \rightarrow further contraction

2. Exposure

- Damage to endothelial cells exposes collagen
- Damaged cells release Von Willebrand factor (binds to collagen)

3. Adhesion

• GP1B surface proteins on platelets bind to Von Willebrand factor

4. Activation

- Platelet changes shape (forms arms to grab other platelets), releases more von Willebrand factor, serotonin, calcium, ADP, thromboxane A2 (positive feedback loop)
- ADP, thromboxane A2 result in GPIIB/IIIA expression

5. Aggregation

• GPIIB/IIIA binds to fibrinogen, links platelets \rightarrow platelet plug

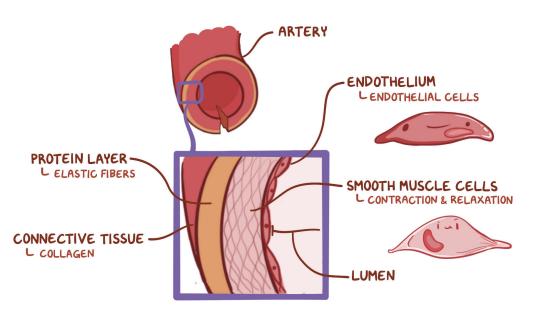


Figure 43.2 Layers of an arterial wall.

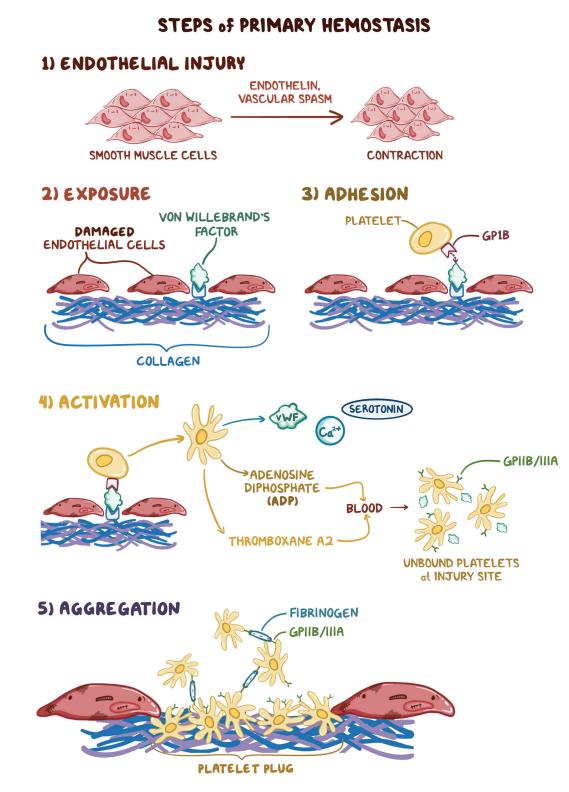


Figure 43.3 Platelet plug formation steps.

COAGULATION (SECONDARY HEMOSTASIS)

osms.it/coagulation-secondary-hemostasis

- Last two hemostasis steps: clotting factors activate fibrin, build fibrin mesh around platelet plug
- Begins with either extrinsic/intrinsic pathway; factor X activation → coagulation cascade (common pathway)

EXTRINSIC PATHWAY

- 1. Trauma damages blood vessel, exposes cells under endothelial layer
 - Tissue factor (factor III) embedded in membrane
- 2.Factor VII in blood binds to tissue factor, calcium \rightarrow VIIa-TF complex

INTRINSIC PATHWAY

- 1.Circulating factor XII contacts negatively charged phosphates on platelets/ subendothelial collagen → factor XIIa
- 2.Factor XIIa cleaves factor XI \rightarrow factor XIa
- 3.Factor XIa + calcium cleaves factor IX \rightarrow factor IXa

4.Factor IXa + factor VIIIa (binds to Von Willebrand factor) + calcium → enter the common pathway

COMMON PATHWAY

- 1.Factor X is cleaved \rightarrow factor Xa
- 2.Factor Xa cleaves factor V \rightarrow factor Va
- 3.Factor Xa + factor Va + calcium → prothrombinase complex
 - Prothrombin (factor II) → thrombin (factor IIa)
- 4.Thrombin activates platelets, cofactors (V, VIII, IX); cleaves fibrinogen, stabilizing factor (→ factor XIIIa + calcium → cross-links in mesh)

COAGULATION TESTS

- Prothrombin time (PT): tests extrinsic pathway
- Activated partial thromboplastin time (aPTT): tests intrinsic pathway

ROLE OF VITAMIN K IN COAGULATION

osms.it/vitamin-k-in-coagulation

- Vitamin K regulates blood coagulation
 - Converts coagulation factors into mature forms
- 12 coagulation factors: (I–XIII, no factor VI); factors II, VII, IX, X require vitamin K
- Quinone reductase reduces vitamin K quinone (dietary form) into vitamin K hydroquinone
- Vitamin K hydroquinone donates electrons to γ -glutamyl carboxylase, converting

non-functional forms of II, VII, IX, X into functional forms

- Adds chemical group made of one carbon, two hydrogens, one oxygen to glutamic acid residues on proteins
- After carboxylation step, vitamin K (as vitamin K epoxide) is converted back into vitamin K quinone via epoxide reductase
- Coagulation factors appear in all coagulation pathways

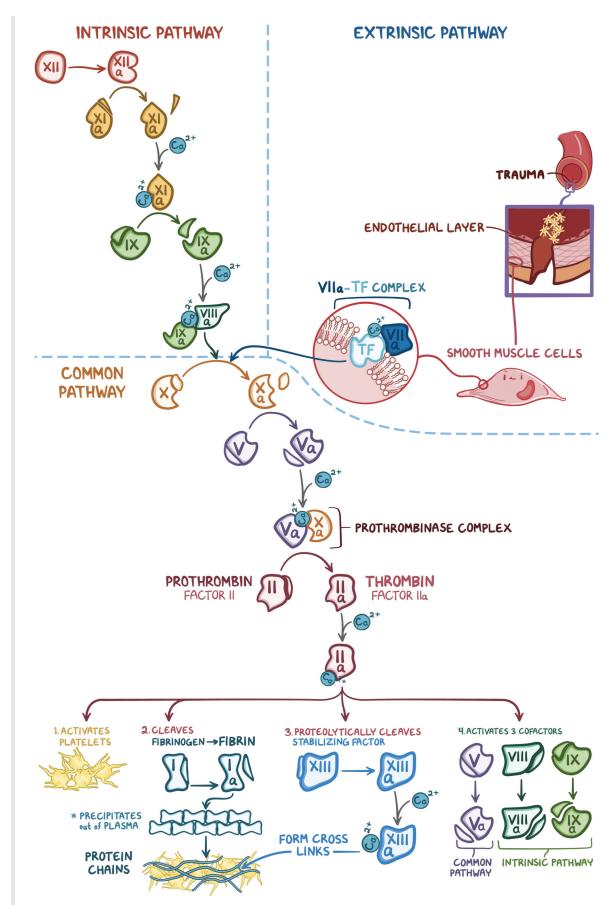
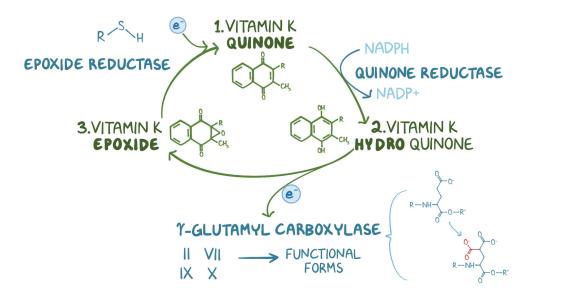
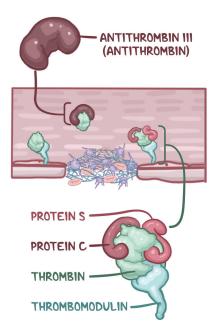



Figure 43.4 Coagulation steps, including the intrinsic, extrinsic, and common pathways.



ANTICOAGULATION, CLOT RETRACTION & FIBRINOLYSIS

osms.it/clot-retraction-and-fibrinolysis

ANTICOAGULATION

- Occurs during primary, secondary hemostasis; regulates clot formation
- Prevents clots from growing too large \rightarrow block blood flow, form emboli
- Regulation starts with thrombin (factor II)
 - Multiple pro-coagulative functions
 - Proteins C, S bind thrombomodulinthrombin → cleaves, inactivates factors V, VIII
 - Antithrombin III binds thrombin/factor X
 → inactivates both (plus factors VII, IX,
 XI, XII with lower affinity)
- Other factors prevent platelets adhering during primary hemostasis
 - Nitric oxide, prostacyclin → ↓ thromboxane A2

Figure 43.6 Proteins involved in anticoagulation. Thrombomodulin is found on the surface of intact epithelial cells lining blood vessels.

CLOT RETRACTION

- Occurs one hour after primary, secondary hemostasis
 - Contracts clot
- Platelets in clot express integrin αllBβ3 → binds to fibrin expressing actin, myosin → lamellipodia contract, fibrin mesh tightens closing wood

FIBRINOLYSIS

- Occurs two days after primary, secondary hemostasis; degrades clot
- Plasminogen → plasmin (via tissue plasminogen activator)
- Plasmin proteases fibrin \rightarrow clot dissolves

BLOOD GROUPS & TRANSFUSIONS

osms.it/blood-groups-and-transfusions

BLOOD TRANSFUSIONS

- Blood transfusion: person receives blood/ elements of blood (usually through intravenous infusion)
 - Homologous transfusion: anonymous donor
 - Autologous transfusion: self-donor (e.g. in planned surgery)
- Blood is mixed with calcium oxalate to prevent coagulation, refrigerated/frozen for storage

BLOOD TYPING

- Transfusion blood types not compatible \rightarrow autoimmune reaction (hemolytic transfusion reaction)
- Two classification systems (based on presence/absence of proteins)
 - ABO system
 - Rh system

ABO system

- Determined by type of glycoproteins found on red blood cells (RBCs)
 - Type A; type B; type A & B; type O (neither)

- Immune system produces antibodies against absent glycoproteins
- Type AB: no antibodies → universal recipients
- Type O: no antigens → universal donors

Rh system

- Determined by presence of Rh protein
 Rh positive; Rh negative
- Rh+ can receive blood from either group
- Rh- can only receive Rh- blood

CROSS MATCHING

- Test to confirm donor's blood is safe for recipient
- Recipient serum is mixed with donor blood
 Agglutination reaction: cannot receive

BLOOD TYPING					
		₽ TYPE A ANTIGEN ↑ TYPE B ANTIGEN			
		P Rh ANTIGEN ABO SYSTEM			
		А	В	AB	0
STEM	Rh+	TYPE A+	TYPE B+	TYPE AB+	••••••••••••••••••••••••••••••••••••••
Rh SYSTEM	Rh-	TYPE A-	TYPE B-	TYPE AB-	TYPE 0-

Figure 43.7 Blood types are reported as ABO group and Rh + or -. When both classification systems are combined, there are eight possible blood types: A+, A-, B+, B-, AB+, AB-, O+, O-.