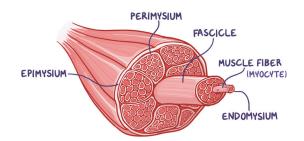
## <u>(711411197)</u>

## NOTES MUSCLES

# MUSCULAR SYSTEM ANATOMY & PHYSIOLOGY

## osms.it/muscle-anatomy-physiology


- Three types of muscle cell/tissue
  Skeletal, cardiac, smooth
- Differ in location, innervation, cell structure
  All cells excitable, extensible, elastic

#### SKELETAL MUSCLE

- Attaches to bone/skin; mostly voluntary; maintains posture, stabilizes joints, generates heat
- Most muscles consist of belly (contracts), tendons

#### **Connective tissue**

- Layers of connective tissue separate muscle belly
  - Epimysium: wrapped around muscle
  - Perimysium: wrapped around fascicles in muscle
  - Endomysium: wrapped around muscle fibers/cells (e.g. myocytes in fascicles)



**Figure 49.1** Cross section of skeletal muscle illustrating connective tissue layers, fascicles, muscle fibers.

- Combine at end to form tendons
  - Origin attaches to stationary bone; insertion attaches to moving bone

#### **Myocytes**

- Long cylindrical cells with multiple nuclei
- Cell membrane  $\rightarrow$  sarcolemma
- Cytoplasm  $\rightarrow$  sarcoplasm
  - Contains smooth endoplasmic reticulum → sarcoplasmic reticulum (stores calcium)
- Transverse tubules (T tubules) project from sarcolemma to center of muscle
- Long filaments called myofibrils fill sarcoplasm, contain thin actin filaments, thick myosin filaments (arranged into sarcomeres)

#### **Motor signals**

- Brain's motor signals control skeletal system
- Motor neurons release acetylcholine receptors onto sarcolemma → rapid ion shifts across sarcolemma, down T tubules → calcium enters myocyte → sarcoplasmic reticulum releases calcium into sarcoplasm → actin, myosin bind → sarcomeres contract → myocyte contracts → sarcoplasmic reticulum grabs calcium → muscle relaxes

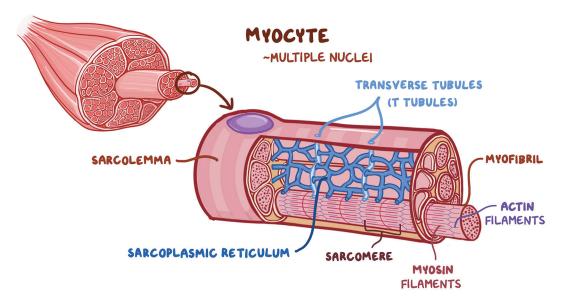



Figure 49.2 Composition of a myocyte.

#### CARDIAC MUSCLE

- Involuntary, striated muscle; found only in heart walls
- Shorter than skeletal muscle; branched and interconnected
- 1–2 central nuclei per fiber
- Numerous mitochondria provide resistance to fatigue
- Pacemaker cells demonstrate automaticity; generate action potentials

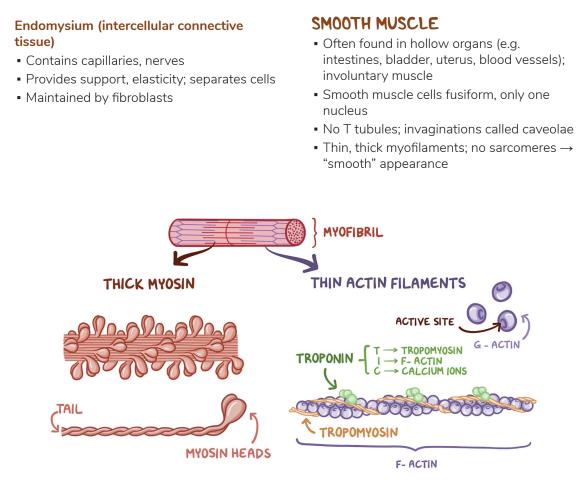
#### **Intercalated discs**

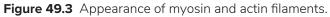
- Composed of gap junctions and desmosomes
  - Gap junctions: areas of low resistance, allows fast signal propagation between cardiomyocytes (coordinated contraction of cells)
  - Desmosomes: anchor the cells together; keeps cells from pulling apart during contraction
  - Allows heart to work as a unit (functional syncytium; syn = together, citos = cell)

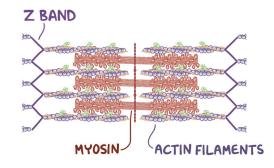
#### T tubules/transverse tubules

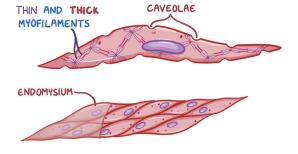
- Invaginate from sarcolemma
- Also serve faster propagation
  - Help conduct signal deeper into cell, enabling more synchronized contraction
  - Run along Z bands, communicate with sarcoplasmic reticulum (Ca<sup>2+</sup> storage)

#### Thick and thin filaments


- Like skeletal muscle, cardiac myofibrils contain sarcomeres bounded by Z bands
  - Z bands: perpendicular to myofibril, attached to thin filaments
  - Thick filaments lie between Z bands
  - All proteins involved are globular
- Thick, thin filaments slide over each other  $\rightarrow$  contraction


#### **Thick filaments**


- Myosin: tail with two heads
  - Each head has ATPase, actin binding sites


#### Thin filaments

- Actin: globular/G-actin polymerizes into a strand of filamentous/F-actin
  - Two F-actins twist into strand with myosin binding site
- Tropomyosin: site blocker, prevents contraction by disabling attachment of myosin to actin
- Troponin: molecule composed of three subunits:
  - $^{\rm o}$  C: Ca^{2+} binding  $\rightarrow$  stops troponin inhibition of actin
  - I: Inhibitory  $\rightarrow$  inhibits ATPase
  - T: → relaxed state attachment of troponin complex to actin; myocardial infarction marker in blood









**Figure 49.4** Z bands are the boundaries between sarcomeres in skeletal and cardiac muscles.

Figure 49.5 Features of smooth muscle cells.

|                                            | SKELETAL                                         | SMOOTH                                                                                             | CARDIAC                                  |
|--------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------|
| LOCATION                                   | Attached to bones                                | Forms walls of hollow organs                                                                       | Heart                                    |
|                                            |                                                  | Lines blood vessels, glands                                                                        |                                          |
| NEUROLOGICAL<br>CONTROL                    | Voluntary                                        | Involuntary                                                                                        | Involuntary                              |
|                                            | Involuntary (reflexes,<br>shivering)             |                                                                                                    |                                          |
|                                            | Innervation: somatic<br>nervous system           | Innervation: autonomic<br>nervous system                                                           | Innervation: autonomic<br>nervous system |
|                                            | Neurotransmitter: ACh                            | Neurotransmitter: ACh, NE                                                                          | Neurotransmitter: ACh                    |
|                                            |                                                  | Also regulated by hormones<br>(e.g. oxytocin), locally-<br>produced substances (e.g.<br>histamine) |                                          |
|                                            |                                                  | Autorhythmicity (e.g.<br>visceral smooth muscle in<br>digestive tract)                             | Autorhythmicity:<br>pacemaker cells      |
|                                            |                                                  | Contracts in response to being stretched                                                           |                                          |
| FUNCTIONS                                  | Movement, posture,                               | Wide distribution                                                                                  | Propulsion of blood                      |
|                                            | stabilization of body<br>Shivering thermogenesis | Digestive tract: movement of food                                                                  |                                          |
|                                            | Voluntary control of                             | Urinary: bladder emptying                                                                          |                                          |
|                                            | micturition (external<br>sphincter)              | Vascular: vessel diameter                                                                          |                                          |
|                                            |                                                  | Sensory: pupil size changes                                                                        |                                          |
|                                            |                                                  | Endocrine: contraction of glands                                                                   |                                          |
| CELL<br>HARACTERISTICS                     | Long, cylindrical, striated                      | Spindle-shaped                                                                                     | Cylindrical, striated,<br>branched       |
| NUCLEUS                                    | Multiple                                         | One, centrally located                                                                             | One, centrally located                   |
| SPECIAL<br>CELL-TO-CELL<br>CHARACTERISTICS | None                                             | Gap junctions in some<br>visceral cells                                                            | Intercalated discs                       |
|                                            |                                                  | visceral cells                                                                                     | Desmosomes                               |
|                                            |                                                  |                                                                                                    | Gap junctions                            |

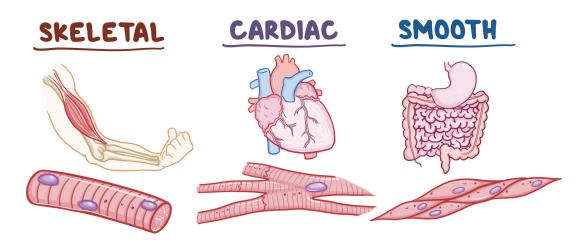



Figure 49.6 An illustration of the three types of muscle: skeletal, cardiac, and smooth.

## SLOW TWITCH & FAST TWITCH MUSCLE FIBERS

## osms.it/slow-fast-twitch-muscle-fibers

- Each action potential generates brief muscle contraction (AKA twitch)
- Twitches overlap to create longer, smooth muscle contractions

#### Skeletal muscle fibers

- Slow twitch (AKA slow oxidative)
- Fast twitch (AKA fast oxidative, fast glycolytic)
- Slow twitch fibers → slow-functioning ATPases → slower individual twitches
- Fast twitch fibers  $\rightarrow$  fast-functioning ATPases  $\rightarrow$  longer individual twitches

#### SLOW OXIDATIVE FIBERS

- AKA Type I fibers
- Have aerobic respiration pathway for metabolizing glucose
- Relatively small → weakest contractions
- ↑ blood vessels, ↑ myoglobin → red color
  AKA "slow red muscle fibers"
- ↑↑ mitochondria supports aerobic respiration
- Generate lots of ATP, use little; ↓ glycogen storage
- Sustain muscle ability for long time

#### FAST OXIDATIVE FIBERS

- AKA Type IIa fibers
- Have aerobic respiration pathway for metabolizing glucose
- Larger than slow fibers → stronger contractions
- ↑ blood vessels, ↑ myoglobin → red color
  AKA "fast red muscle fibers"
- Generate lots of ATP, use more; ↑ glycogen storage
- Fatigue quickly

#### FAST GLYCOLYTIC FIBERS

- AKA Type IIx fibers
- Have anaerobic respiration pathway for metabolizing glucose
- Largest fibers  $\rightarrow$  stronger contractions
- ↓ blood vessels, ↓ myoglobin → white color
  AKA "white muscle fibers"
- ↓ mitochondria
- Generate little ATP, use lots; ↑↑ glycogen storage
- Fatigue fastest

## SLIDING FILAMENT MODEL OF MUSCLE CONTRACTION

### osms.it/sliding-filament-model

#### MECHANISM OF MUSCLE CONTRACTION AFTER POWER STROKE

- Thick myosin filaments pull thin actin filaments towards M-line → sarcomere shortens; A-band of the muscle does not change, but H-, I-bands shorten
- At max contraction, almost complete overlap of thick, thin filaments; H-, I- bands almost completely gone

#### FACTORS DETERMINING CONTRACTION FORCE

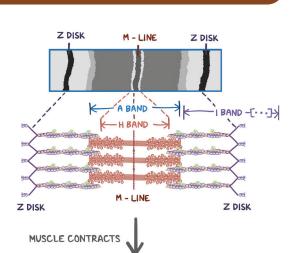
#### Size of muscle fibers

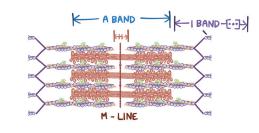
 Larger muscle fibers → ↑ filaments → ↑ cross-bridges → stronger contraction

#### Number of active muscle fibers

•  $\uparrow$  muscle fibers  $\rightarrow$  stronger contraction

## Frequency of stimulation (force-frequency relationship)


 ↑ frequency of stimulation → ↑ calcium ions flow from sarcoplasmic reticulum into sarcoplasm → ↑ bind to troponin regulatory proteins on actin filaments → ↑ myosin binding → stronger contraction


#### Length of sarcomere

- AKA length-tension relationship
- Longer sarcomere → stronger contraction; directly proportional

#### Velocity of muscle shortening

- AKA force-velocity relationship
- Slower contraction  $\rightarrow$  stronger contraction





**Figure 49.7** The changes that occur when muscle contracts.

# ATP & MUSCLE CONTRACTION

## osms.it/ATP-and-muscle-contraction

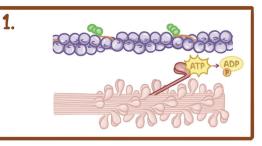
#### MUSCLE TONE

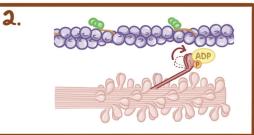
• Force applied to muscles at rest

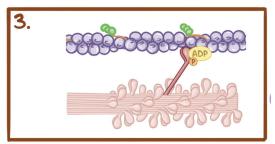
#### MUSCLE TENSION

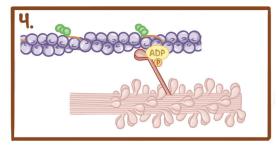
Pulling force when muscles act

#### **MUSCLE CONTRACTION**


- Action potential travels along sarcolemma, reaches T-tubule, stimulating dihydropyridine (DHP) receptors
- DHP receptor stimulation opens ryanodine receptors
  - AKA calcium channels
- Calcium from sarcoplasmic reticulum flows into sarcoplasm, binds to C-subunits of troponin regulatory proteins
- Troponin changes shape, moving tropomyosin out of the way, allowing actin to be bound by myosin head's cross-bridge formation
- Energy cocks myosin head backwards → high-energy position
- Myosin head can then launch towards M-line, pulling actin filament with it


#### • AKA power stroke


- Action potential ends → calcium ions pumped back into sarcoplasmic reticulum → C-subunit of troponin no longer bound
  - $\rightarrow$  troponin, tropomyosin cover back up actin's active sites  $\rightarrow$  no myosin binding (cross-bridge detaches)  $\rightarrow$  muscle relaxes


#### ISOTONIC VS. ISOMETRIC CONTRACTIONS

- Isotonic: muscle length changes but tension stays same
- Isometric: muscle length stays same but tension increases





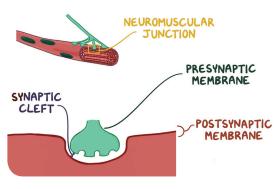




#### Figure 49.8 Muscle contraction.

 Part of myosin head is an ATPase; it cleaves ATP into ADP and phosphate ion.
 Myosin head uses this energy to tip back into its high-energy position.

3: Myosin head binds to active site on actin, triggering release of stored energy in myosin head.


4: Power stroke (myosin head launches, pulling actin with it).

# NEUROMUSCULAR JUNCTION & MOTOR UNIT

### osms.it/neuromuscular-junction-motor-unit

#### NEUROMUSCULAR JUNCTION

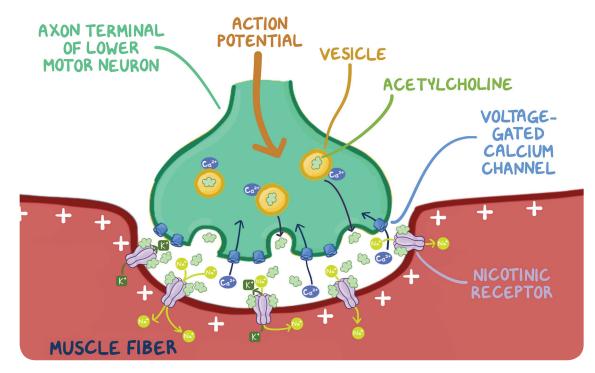
- Where axon terminal meets muscle fiber
- Presynaptic membrane
  - Membrane of axon terminal
- Postsynaptic membrane
  - AKA motor end plate
  - Membrane of skeletal muscle fiber
- Synaptic cleft
  - Gap between membranes



**Figure 49.9** Illustration of the neuromuscular junction.

#### ACTION POTENTIAL GENERATION IN MUSCLE FIBER

- Action potentials in axon terminal stimulate voltage-gated calcium channels in presynaptic membrane → extracellular calcium ions flow into the axon terminal
- Calcium binds to acetylcholine-containing vesicles in axon terminal → vesicles fuse with presynaptic membrane, acetylcholine released into synaptic cleft
- Two acetylcholine molecules bind to one ligand gated ion channel
  - AKA nicotinic receptor
  - On motor end plate  $\rightarrow$  sodium ions flow into muscle


- Positive charge builds up inside muscle fiber → creates end plate potential
  - AKA depolarization
- Resting potential of membrane: -100mV  $\rightarrow$  -60mV
- Voltage-gated sodium channels open up → more sodium ions flow in, generating action potential in muscle fiber

#### ACTION POTENTIAL CESSATION IN MUSCLE FIBER

- Action potential in axon stops → voltagegated calcium channels close → influx of calcium ions to axon terminal stops → synaptic vesicles stop fusing with membrane
- Remaining acetylcholine in cleft degraded by acetylcholinesterase into choline, acetate → choline taken back into axon terminal → acetylcholine transferase makes new acetylcholine → acetate diffuses away

#### MOTOR UNITS

- One lower motor neuron, fibers it innervates form single motor unit
- On average, one lower motor neuron innervates 150 skeletal muscle fibers
- More precise muscles  $\rightarrow$  smaller motor units; e.g. 10–15 muscle fibers per neuron in eye
- Less precise muscles → larger motor units (e.g. ≤ 2000 muscle fibers per neuron in bicep)



**Figure 49.10** Action potential generation in muscle fiber. Influx of sodium ions leads to buildup of positive charge inside muscle fiber. Action potential generated  $\rightarrow$  muscle fiber contracts.

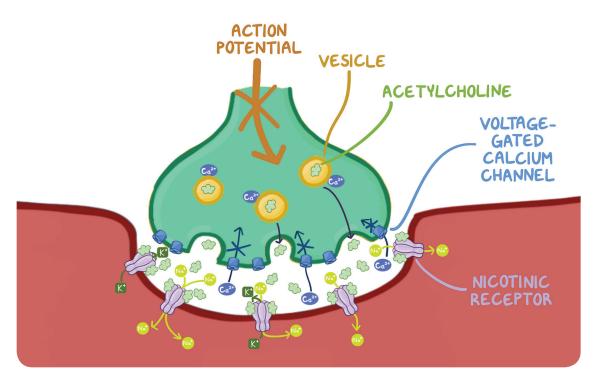



Figure 49.11 Action potential cessation in muscle fiber. Action potential in axons stops  $\rightarrow$  voltage-gated calcium channels close  $\rightarrow$  influx of calcium stops  $\rightarrow$  synaptic vesicles stop fusing with membrane.