NOTES

BLOOD BRAIN BARRIER & CSF

BLOOD BRAIN BARRIER (BBB)

osms.it/blood-brain_barrier

- Selective barrier separating blood, interstitial liquid in central nervous system (CNS)
- Molecular transport keeps harmful substances out, allows metabolic waste products to diffuse from brain → plasma
- Formed by
 - Tight junctions between endothelial cells of brain capillaries
 - Astrocyte projection ("feet") supporting, maintaining structure
 - Basal (basement) membrane
- Passive transport: no energy needed (e.g. passive diffusion of lipid-soluble molecules)
- Active transport: energy needed (e.g. facilitated diffusion of glucose, amino acids)
- Primary function: CNS homeostasis
 - Providing selective nutrient passage
 - Controlling fluid movement
 - Protecting from toxins, microbes

Figure 52.1 Components of the blood brain barrier.

BBB PERMEABILITY

- May change due to inflammation, irradiation, tumors
- Permeant molecules (lipid-soluble molecules)
 - Steroid hormones; oxygen; carbon dioxide; water; glucose, essential amino acids; certain electrolytes
- Impermeant molecules
 - Non-essential amino acids; waste products; microbes, toxins; proteins; certain electrolytes (e.g. potassium); water-soluble drugs

BBB IN CIRCUMVENTRICULAR ORGANS

- Absent in circumventricular organs \rightarrow connection between CNS, blood
- Includes sensory, secretory organs

Sensory organs

- Sense plasma molecules, coordinate response to them
 - Area postrema/vomiting center (senses harmful substances in blood \rightarrow vomiting reflex)
 - Subfornical organ
 - Vascular organ of lamina terminalis

Secretory organs

- Receive stimuli, secrete substances directly in plasma
 - Posterior pituitary gland
 - Median eminence of hypothalamus
 - Pineal gland

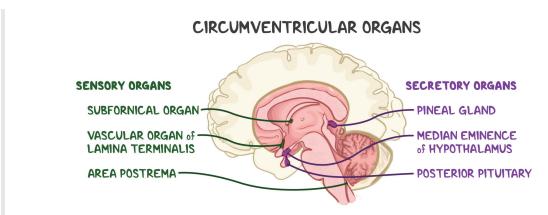


Figure 52.2 Sensory and secretory circumventricular organs.

CEREBROSPINAL FLUID (CSF)

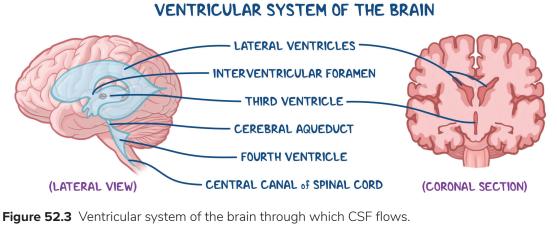
osms.it/cerebrospinal-fluid

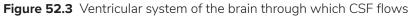
- Body fluid found within CNS
- Fills, circulates through
 - Ventricular system (lateral ventricles, third ventricle, fourth ventricle, central canal of spinal cord)
 - Subarachnoid space surrounding brain, spinal cord

CIRCULATION

- Lateral ventricles → interventricular foramina → third ventricle → cerebral aqueduct → fourth ventricle → lateral, median apertures → subarachnoid space, cisterns (some enters spinal column) → arachnoid granulations (arachnoid mater outpouching) → venous system circulation
- Kept in motion by cilia of ependymal cells lining ventricle system

PRODUCTION


- Mostly produced by choroid plexuses
 - Network of capillaries, modified ependymal cells in ventricles
 - Also functions as blood-CSF barrier
- Rate
 - □ 500mL/day
- Regulated by
 - Hormones, blood pressure, autonomic nervous system


CHARACTERISTICS

- Quantity: 125mL in total
- Color: limpid
- **Pressure:** range from 8–15mmHg (supine) to 16–24mmHg (sitting)
- pH: 7.33
- Protein content: 35mg/dL (< serum)
- Glucose: 60mg/dL (< serum)
- Electrolytes (mEq/L)
 - Sodium: 138
 - Potassium: 2.8
 - Calcium: 2.1
 - Magnesium: 2.0
 - Chloride: 119 (> serum)
- Sampled by lumbar puncture
 - Lumbar cistern puncture at end of spinal cord; between second, third lumbar vertebrae (L2–L3)

FUNCTIONS

- CNS protection
 - Trauma \rightarrow absorbs mechanical energy
 - Own weight \rightarrow provides buoyancy
 - \circ lschemia \rightarrow decreases quantity, relieves intracranial pressure
 - ${}^{\rm o}$ Toxic metabolites \rightarrow clears them out
- Transportation medium for chemical signals, nutrients

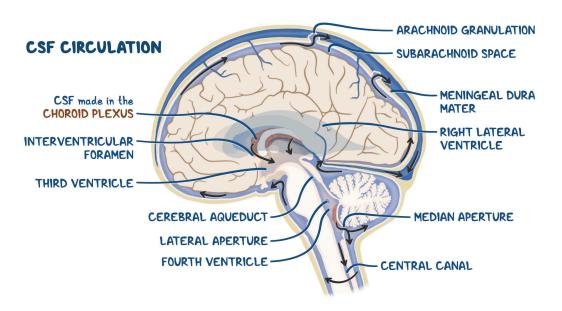


Figure 52.4 CSF circulation. CSF is produced by the choroid plexuses of the ventricles and is reabsorbed through the arachnoid granulations.