NOTES

NOTES BLADDER & URETHRAL CONGENITAL DISORDERS

GENERALLY, WHAT ARE THEY?

PATHOLOGY & CAUSES

- Congenital abnormalities in bladder, urethra
- Benign/kidney failure/systemic involvement

CAUSES

Interferences in fetal development

SIGNS & SYMPTOMS

• May be asymptomatic until complications develop

DIAGNOSIS

DIAGNOSTIC IMAGING

- **Prenatal ultrasound**
- Diagnosis difficult

OTHER DIAGNOSTICS

• Bladder exstrophy, hypospadias, epispadias: visible at birth

TREATMENT

SURGERY

See individual disorders

BLADDER EXSTROPHY

osms.it/bladder-exstrophy

PATHOLOGY & CAUSES

- Congenital disorder, inside-out bladder protruding out of abdomen
- Part of the exstrophy-epispadias complex (EEC) that includes epispadias and cloacal exstrophy
- Bladder fails to fully form anteriorly, pushed through front anterior abdomen wall

CAUSES

 Occurs during embryological development: overdevelopment of cloacal membrane disrupts development of the lower abdominal wall → prevents migration of the mesenchymal tissue towards midline \rightarrow rupture of cloacal membrane \rightarrow herniation of lower abdominal components through the lower abdominal wall surface

RISK FACTORS

- Genetic predisposition
- Biological males > biological females
- Firstborn > subsequent births
- Infants born to white parents

COMPLICATIONS

• Urinary and/or fecal incontinence, UTIs, abnormal gait, hip dysplasia, rectal prolapse; inguinal hernia, uterine prolapse

SIGNS & SYMPTOMS

- Observable changes in pelvis, pelvic floor, genitalia
 - Exposed bladder and urethra
 - Low-set umbilicus
 - Abnormalities of the pelvic bone, vertebral column, and spinal cord
 - Flattened puborectal sling, anus anteriorly displaced
 - Biological males: epispadias, absent dorsal foreskin, open prostate, shortened penis
 - Biological females: vagina wider, shorter, more vertically oriented; displaced, narrowed vaginal orifice; bifid clitoris; divergent labia
 - Epispadias

DIAGNOSIS

DIAGNOSTIC IMAGING

CT scan

CT scan detects skeletal abnormalities

Ultrasound and MRI

 Often made by prenatal ultrasound, can be confirmed by MRI

OTHER DIAGNOSTICS

Clinically recognizable at time of delivery

Figure 107.1 A newborn baby with a severe case of bladder exstrophy. The genitals are also grossly irregular.

SURGERY

- Performed within first weeks of life
- Staged surgeries required over months/ years

Figure 107.2 Illustration of the bladder pushing through the symphysis pubis and abdominal wall during bladder exstrophy.

Figure 107.3 A plain pelvic radiograph demonstrating a wide symphysis pubis in a case of bladder exstrophy.

HYDRONEPHROSIS

osms.it/hydronephrosis

PATHOLOGY & CAUSES

- Dilation of renal pelvis, calyces associated with kidney atrophy
- Severe, long-standing hydronephrosis → kidney failure
- Urinary tract obstruction/compression \rightarrow build up of urinary pressure \rightarrow progressive dilation
- Dilation starts at blockage, continues up towards kidneys
 - Hydroureter: dilation of ureter
 - Hydronephrosis/hydroureteronephrosis: dilation of ureter, renal pelvis, calyces
- Grading
 - 0: no dilation
 - I: dilation of renal pelvis
 - II: dilation of renal pelvis, calyces
 - III: moderate dilation of renal pelvis, calyces; mild cortical thinning, flattening of papillae
 - IV: severe renal dilation; cortical thinning

CAUSES

- Fetus: antenatal hydronephrosis
 - Often unknown, may disappear on own
 - Congenital malformation: ureteropelvic junction obstruction, vesicoureteral reflux
- Children:
 - Congenital malformation: ureterocele, posterior urethral valves
- Adults:
 - Acquired disease: kidney stones

 (most common cause), benign
 prostatic hyperplasia, blood clot,
 contiguous malignant diseases
 (prostate/bladder/cervix cancer,
 retroperitoneal lymphoma), contiguous
 inflammation (prostatitis, ureteritis,
 urethritis, retroperitoneal fibrosis), tissue
 scarring from injury/surgery, uterus
 enlargement during pregnancy

MNEMONIC: SIP BaN

Causes of acquired hydronephrosis Stones

Inflammation Prostate hypertrophy Baby (pregnancy) / Blood clot Neoplasm

SIGNS & SYMPTOMS

- Acute with sudden onset: intense pain in flank, called Dietl's crisis
- Nausea, vomiting

DIAGNOSIS

DIAGNOSTIC IMAGING

Abdominal ultrasound

- Dilation of renal calyces
- Increased anteroposterior diameter
- Dilated ureter, if obstruction is distal

Prenatal ultrasound

Oligohydramnios if bilateral obstruction

Intravenous (IV) urography/pyelography

Demonstrates distal obstruction

TREATMENT

SURGERY

- Restore urine flow: upper blockage
 - Acute: nephrostomy tube
 - Chronic: ureteric stent/pyeloplasty

OTHER INTERVENTIONS

- Restore urine flow: lower blockage
 - Urinary or suprapubic catheter

Figure 107.4 An abdominal CT scan in the coronal plane demonstrating severe hydronephrosis of the left kidney.

POSTERIOR URETHRAL VALVE

osms.it/posterior-urethral-valve

PATHOLOGY & CAUSES

- Congenital disorder, posterior urethra obstructed by membranous folds/tissue flap
- Most common cause of bladder outlet obstruction in infants who are biologically male
- Obstruction increases bladder pressure
 → bladder wall hypertrophy → decreases
 bladder compliance → repeats
- Obstruction increases bladder pressure
 → ureterovesical junction dysfunction →
 vesicoureteral reflux
- Urine retention by obstruction \rightarrow urine backs up \rightarrow bilateral hydronephrosis
- Severe obstructions in utero → oligohydramnios → Potter syndrome
 - Limb irregularities, facial anomalies, kidney failure, pulmonary hypoplasia

CAUSES

 Unknown; theory: abnormal integration of Wolffian duct → large plicae colliculi fuse anteriorly

SIGNS & SYMPTOMS

 Posterior urethra obstructed by membranous folds/tissue flap

DIAGNOSIS

DIAGNOSTIC IMAGING

Prenatal ultrasound

- Generally seen > 26 weeks gestation
- Noticeable distension and hypertrophy of bladder
- Possitlbe hydronephrosis and hydroureter
- Keyhole sign: distended proximal urethra and thick-walled bladder, resembles keyhole

Antenatal ultrasound

- Hydronephrosis (10% may be normal)
- Trabeculated and thick-walled bladder with elongation and dilation of posterior urethra
- Valve may be seen as echogenic line

Voiding cystourethrogram (VCUG)

- Dilation and elongation of posterior urethra
- Vesicoureteral reflux (in half of instances)
- Bladder trabeculation or diverticula
- Radiolucent linear band (representing valve)

TREATMENT

SURGERY

- Surgical ablation of membrane
- Prenatal surgery

Figure 107.5 A lateral view of a micturating cystourethrogram demonstrating a proximally dilated urethra in case of posterior urethral valve.

VESICOURETERAL REFLUX

osms.it/vesicoureteral-reflux

PATHOLOGY & CAUSES

- Retrograde flow of urine from the bladder into the ureters and kidneys
- Grading
 - Grade I: urine goes into ureters
 - Grade II: urine fills entire ureter, renal pelvis
 - Grade III: urine fills, stretches ureter, renal pelvis
 - Grade IV: ureter swollen, curvy; renal pelvis, calyces swollen, distorted
 - Grade V: urine fills ureter, pelvis, calyces; swell completely
- Primary vesicoureteral reflux (most common type): due to congenital defect at ureterovesical junction (congenital absence/ shortening of intravesical portion of ureter)
 - Inadequate closure of the ureterovesical junction → urine builds up in bladder
 → ureter fails to act as valve → urine returns to ureters
- Secondary vesicoureteral reflux: due to failure of the ureterovesical junction to close during bladder contraction; often due to a blockage in urinary tract
 - \circ Pressure increases in urinary tract \rightarrow urine follows path of least resistance, back into ureters

RISK FACTORS

- Genetic predisposition
- Neonates: prenatal hydronephrosis
- Children: febrile UTIs
- Individuals of white, Northern European descent

COMPLICATIONS

- Recurrent UTIs, pyelonephritis, renal scarring/fibrosis, hypertension, kidney failure
- Infants: asymptomatic, fever, lethargy, poor appetite

• Children: discomfort with urination; bowel and bladder dysfunction

SIGNS & SYMPTOMS

- Infants: asymptomatic, fever, lethargy, poor apetite
- Children: discomfort with urination

DIAGNOSIS

DIAGNOSTIC IMAGING

Abdominal ultrasound

- Assesses renal parenchyma for scarring or anatomical abnormalities
- Presence of hydronephrosis

VCUG

- Should be performed on first UTI in child < six years old
- Used for grading
- Presence of other anatomical abnormalities

TREATMENT

SURGERY

- Primary vesicoureteral reflux
 - Surgery to repair valve at ureterovesical junction
 - Infants, children: no intervention; child grows → ureters lengthens → valve function improves
- Secondary vesicoureteral reflux
 - Surgery to remove blockage

Figure 107.6 A voiding cystourethrogram demonstrating bilateral vesicoureteric reflux.