

NOTES

ACUTE & CHRONIC KIDNEY DISEASE

GENERALLY, WHAT IS IT?

PATHOLOGY & CAUSES

Decline of kidney function

TYPES

Acute kidney injury (AKI)

- Decline over < three months
- Divided by cause
 - Prerenal azotemia: kidney hypoperfusion
 - Intrarenal azotemia: injury within kidney
 - Postrenal azotemia: obstructed urine outflow distally

Chronic kidney disease (CKD)

- Decline over > three months
- Any etiology causing decreased kidney function

SIGNS & SYMPTOMS

- Electrolyte imbalance (e.g. ↑ K+, ↓ Na+, ↓ Ca²⁺)
- Decreased waste elimination (azotemia/ uremia)
- Fluid retention

DIAGNOSIS

DIAGNOSTIC IMAGING

Ultrasound, CT scan

Obstructive renal failure

LAB RESULTS

- Urine electrolytes, osmolality, cellular casts, proteinuria, hematuria
- Acid-base status, electrolytes, protein levels
- Blood urea nitrogen (BUN)-to-creatinine ratio (BUN:Cr)
 - Prerenal azotemia: > 20:1
 - □ Renal azotemia: < 15:1
 - Postrenal azotemia: > 15:1; over time, < 15:1

TREATMENT

MEDICATIONS

 Correct acid-base status, electrolytes, volemia

OTHER INTERVENTIONS

 Hemodialysis (not used for prerenal azotemia)

CHRONIC KIDNEY DISEASE

osms.it/chronic-kidney-disease

PATHOLOGY & CAUSES

- Gradual decline of kidney function over ≥ three months
- Affects all physiologic roles of kidney
- ↓ Glomerular filtration rate (GFR) → ↓ waste products excretion → build-up of nitrogenous compounds $\rightarrow \uparrow$ BUN, Cr, urea (azotemia/uremia)
 - Inflammation (e.g uremic pericarditis)
 - Interferes with neurotransmitter metabolism → encephalopathy
 - □ Platelet dysfunction → bleeding (platelet adhesion, aggregation)
 - □ Excess urea through eccrine glands → crystallizes on skin → uremic frost
- ↓ reabsorption, secretion → impaired electrolyte homeostasis
 - □ ↑ K+, ↓ Na+, ↓ HCO₂-, ↓ Ca²⁺
- Impaired hormone secretion
 - □ ↓ erythropoietin → anemia
 - □ \ GFR \rightarrow \ renin \rightarrow hypertension
 - J vitamin D activation → J intestinal absorption of $Ca^{2+} \rightarrow hypocalcemia$

- Less common
 - Glomerulonephritis (e.g. lupus nephritis); rheumatoid arthritis; HIV nephropathy; long term medication use (e.g. NSAIDs); polycystic kidney disease

RISK FACTORS

- Family history
- Reflux nephropathy
- Other congenital kidney disorders

COMPLICATIONS

- Uremic fibrinous pericarditis, uremic gastroenteritis
- Renal osteodystrophy → increased risk of skeletal fractures; caused by secondary hyperparathyroidism (compensatory parathyroid hormone release due to lack of vitamin D)
- Renovascular hypertension
 - Development/exacerbation of hypertension due to increased RAAS
- Congestive heart failure
- Coma, death by severe encephalopathy

CAUSES

- Hypertension (most common)
 - □ ↑ blood pressure → hypertrophy/ sclerosis of renal arteries → hypoperfusion, ischemic injury → growth factor secretion by macrophages → mesangial cells regress to mesoangioblasts, secrete extracellular matrix → glomerulosclerosis, loss of function
- Diabetic nephropathy
 - □ ↑ blood glucose → non-enzymatic glycosylation of efferent arterioles → initial hyperinflation → mesangial cells secrete structural matrix → nodular glomerulosclerosis, loss of function

SIGNS & SYMPTOMS

- Less advanced stages usually asymptomatic
- Oliguria
 - Urine output < 400mL in 24 hour
- ↑ fluid volume
 - Peripheral edema
- Azotemia/uremia
- Skin
 - Uremic pruritus, excoriations
- GI tract
 - Ulcerations, bleeding, diarrhea, vomiting
- Encephalopathy
 - Fatigue, somnolence, appetite loss, asterixis, confusion

- ↑ K+ (> 5.5mEq/L)
 - Cardiac arrhythmias
- Anemia
 - Low erythropoietin production by kidneys

DIAGNOSIS

DIAGNOSTIC IMAGING

Ultrasound

 Etiological investigation; polycystic kidney disease (PCKD), renal artery stenosis, hydronephrosis, etc.; decreased kidney volume

LAB RESULTS

- Iron deficiency anemia
- Metabolic acidosis, ↑ PO³⁻, ↑ K⁺, ↓ Na⁺, ↓ HCO_3^- , $\downarrow Ca^{2+}$
- Biopsy
 - Glomerulosclerosis/interstitial fibrosis

OTHER DIAGNOSTICS

- Rise of serum Cr over months/years
- Increased blood urea nitrogen:creatinine (BUN:Cr)
- Cr clearance to assess glomerular filtration rate (GFR)
 - Stage I: kidney damage with normal/

- increased GFR (> 90mL/min/1.73m2)
- Stage II: mild reduction in GFR (60– 89mL/min/1.73m2)
- Stage IIIa: moderate reduction in GFR (45-59mL/min/1.73m2)
- Stage IIIb: moderate reduction in GFR (30-44mL/min/1.73m2)
- Stage IV: severe reduction in GFR (15-29mL/min/1.73m2)
- Stage V: end stage kidney failure (GFR < 15mL/min/1.73m2 or dialysis)

TREATMENT

MEDICATIONS

 ACE inhibitors, angiotensin II receptor antagonists (ARBs)

SURGERY

- Kidney transplantation
 - Severe (e.g. Stage V CKI)

OTHER INTERVENTIONS

- Dialysis
 - Severe (e.g. Stage V CKI)
- Hemodialysis
 - Remove excess waste products, fluids via artificial kidney (dialyzer)
- Peritoneal dialysis
 - Remove excess waste products, fluids via peritoneal membrane

POSTRENAL AZOTEMIA

osms.it/postrenal-azotemia

PATHOLOGY & CAUSES

- Acute kidney injury due to obstructed urine outflow distally → ↑ nitrogenous compounds in blood
- Obstruction of urine outflow \rightarrow reversal of Starling forces → pressure backs up to kidneys, tubules → reduced pressure gradient between arterioles, tubules →

J GFR

CAUSES

- Compression
 - Ureters (e.g. intra abdominal tumors); urethra, benign prostatic hyperplasia (BPH)
- Obstruction
 - Ureters; urethra, kidney stones

- Congenital abnormalities
 - Vesicoureteral reflux

COMPLICATIONS

 Hydronephrosis; urinary tract infection (UTI), obstruction, urosepsis

SIGNS & SYMPTOMS

- Normotensive/hypertensive
- Renal colic
 - Acute complete obstruction, dysuria, urgency, overflow incontinence, frequent urination
- Abdominal distention
 - Urinary retention
- Costovertebral angle tenderness
- - Bladder distention, secondary infection, stones, masses
- Decreased urine output, hematuria
 - □ Stones

DIAGNOSIS

DIAGNOSTIC IMAGING

Renal ultrasound

- Detect obstruction; hydronephrosis, stones > 3mm
 - Echogenic foci, acoustic shadowing

CT scan

- Confirmation
- Hyperdense foci; dilation of ureter

LAB RESULTS

- Urinalysis
 - $_{\circ}$ U_{Na+} < 20 mEq/L; over time > 40mEq/L
 - $_{\circ}$ FE_{Na} > 1%; severe: FE_{Na} > 2%
 - $_{\circ}$ U_{oms} > 500mOsm/kg; over time 350mOsm/kg

OTHER DIAGNOSTICS

- Physical exam
 - Palpable bladder
- Digital rectal examination
 - Enlarged prostate

TREATMENT

SURGERY

- Percutaneous nephrostomy, lithotripsy
 - Obstruction by stones

OTHER INTERVENTIONS

- Short term hemodialysis (severe)
- Placement of Foley catheter, ureteral stent/ nephrostomy

PRERENAL AZOTEMIA

osms.it/prerenal-azotemia

PATHOLOGY & CAUSES

- Acute renal injury
 - □ Kidney hypoperfusion → increased nitrogenous compounds in blood (BUN,
- Decreased blood flow to kidney → J glomerular filtration rate (GFR), accumulation of waste products (BUN, Cr) in blood → azotemia
- J GFR → renin-angiotensin-aldosterone system (RAAS) activation → aldosterone secretion \rightarrow Na+, water retention \rightarrow urea follows Na+ \rightarrow ↑ BUN:Cr (> 20:1)

CAUSES

- Absolute fluid loss
 - Burns, dehydration, long term vomiting, diarrhea, hemorrhage
- Relative fluid loss
 - Congestive heart failure, distributive
- Renal artery stenosis/embolus
- Liver failure
 - □ Portal hypertension → systemic, splanchnic vasodilation → 1 effective blood volume, ↑ sequestration in peritoneal cavity (ascites) → relative hypovolemia → ↓ renal perfusion

RISK FACTORS

- Gastrointestinal (GI) tract disorders (e.g. diarrhea, vomiting)
- Liver disease
- Congestive heart failure

SIGNS & SYMPTOMS

- Oliguria: urine output < 400mL in 24 hours
- Azotemia: confusion, lethargy, asterixis, appetite loss, nausea, bleeding (platelet dysfunction), uremic frost

- Dehvdration: drv mucous membranes, skin turgor loss, thirst, xerostomia (dry mouth), tachycardia, orthostatic hypotension
- Congestive heart failure: jugular vein distention, edema
- Underlying liver failure: ascites

DIAGNOSIS

DIAGNOSTIC IMAGING

Doppler renal ultrasound

Renal artery stenosis/embolus

LAB RESULTS

- Absolute fluid loss
 - $^{\circ}$ ↑ Na $^{+}$, ↑ Ca $^{2+}$, ↑ hematocrit, ↑ HCO $_{_{3}}$, ↑ protein/albumin
- Relative fluid loss
 - □ ↓ Na+, ↓ protein/albumin
- Urine sodium $(U_{Na+}) < 20 \text{mEq/L}$
- Fraction of sodium excreted to sodium filtered (FE_{Na}) < 1%
- Urine osmolality $(U_{oms}) > 500 \text{mOsm/kg}$

OTHER DIAGNOSTICS

■ BUN:Cr > 20:1

TREATMENT

MEDICATIONS

- Diuretics, angiotensin-converting enzyme (ACE) inhibitors, beta blockers, nitrates, positive inotropic agents
 - Congestive heart failure

OTHER INTERVENTIONS

- Correct fluid, electrolyte imbalances with IV fluids
 - Crystalloid solutions: isotonic solutions containing electrolytes, small organic molecules (e.g. isotonic saline, Ringer's

lactate); most common

- Colloid solutions: hypertonic solutions containing larger molecules; albumin, hyperoncotic starch (e.g. glucose, dextrose)
- Blood transfusion: in case of hemorrhage

Figure 106.1 The clinical appearance of uremic frost in an individual with azotemia.

RENAL AZOTEMIA

osms.it/renal-azotemia

PATHOLOGY & CAUSES

- Acute renal injury caused by problem within kidney → increased nitrogenous compounds in blood
- Kidney injury → ↓ GFR → accumulation of waste products in blood → azotemia

CAUSES

Glomerular injury

- Glomerulonephritis
 - Inflammation of glomeruli (e.g. poststreptococcal glomerulonephritis, Goodpasture's syndrome, Wegener's granulomatosis, IgA nephropathy)
 - Deposition of immune complexes on glomerular basement membrane → activation of complement system → chemoattraction of macrophages, neutrophils → mediator release → inflammation, podocyte damage → protein, blood cell leakage → reduces pressure gradient between arterioles, tubules $\rightarrow \downarrow$ GFR, oliguria

Tubular injury

• Acute tubular necrosis: damage to tubular epithelial cells; shedding of tubular cells,

granular casts in urine

- Ischemic tubular necrosis: caused by prerenal issues (hypoperfusion due to absolute, relative fluid loss)
- Nephrotoxic tubular necrosis: caused by nephrotoxins, like organic solvents (carbon tetrachloride), heavy metal poisoning (lead, mercury), ethylene glycol, radiocontrast agents, certain medications (aminoglycosides)
- Shedded tubular cells, granular casts obstruct tubule → ↑ tubular pressure → reduces pressure gradient between arterioles, tubules $\rightarrow \downarrow$ GFR \rightarrow oliguria

Interstitial injury

- Acute interstitial nephritis
 - Caused by Type I, IV hypersensitivity due to nonsteroidal anti-inflammatory drugs (NSAIDs)/penicillin/diuretics
 - □ Inflammation of interstitium → renal papillary necrosis → hematuria
- Bilateral pyelonephritis

Glomerular endotheliopathy

• Thrombotic microangiopathy, hyaline arteriolosclerosis, scleroderma

RISK FACTORS

• Family history of congenital/systemic diseases (e.g. diabetes, hypertension, systemic lupus erythematosus, hepatitis B, C)

SIGNS & SYMPTOMS

- Oliguria, hematuria, flank pain, livedo reticularis (lace-like purplish skin discoloration)
- Fluid build-up
 - Hypertension, hypertensive retinopathy,
- Azotemia
 - Confusion, letharqy, asterixis, loss of appetite, nausea, bleeding (platelet dysfunction)
- Hypersensitivity
 - Rash, fever, joint swelling/tenderness

DIAGNOSIS

LAB RESULTS

- U_{Na+} > 40mEq/L
- FE_{Na} < 2%
- $U_{oms} > 350 \text{mOsm/kg}$
- Erythrocyte, leukocyte, epithelial casts: glomerulonephritis
- Pigmented muddy brown granular/tubular epithelial cells cylinders: acute tubular necrosis

OTHER DIAGNOSTICS

- BUN:Cr < 15:1
- Interstitial nephritis
 - Hypersensitivity, acute interstitial nephritis
 - □ ↑ IgE: Type I
 - Skin test: T-cell mediated Type IV
 - Eosinophilia

TREATMENT

MEDICATIONS

- Glomerulonephritis; treat according to etiology (e.g. corticosteroids)
- Pyelonephritis
 - Antibiotics

OTHER INTERVENTIONS

- Avoid nephrotoxins/allergens
- Glomerulonephritis; treat according to etiology (e.g. plasmapheresis)
- Hemodialysis

KEY DIAGNOSTIC FINDINGS IN AZOTEMIA

	PRERENAL	INTRARENAL	POSTRENAL
BUN:C+	> 20:1	< 15:1	< 20:1
UNa+	< 20 mEq/L	> 40 mEq/L	< 20 mEq/L
FENa	< 1%	< 2%	> 1%
Uoms	> 500 mOsm/kg	> 350 mOsm/kg	> 500 mOsm/kg