NOTES

PULMONARY CHANGES DURING EXERCISE

osms.it/pulmonary_changes_during_exercise

RESPIRATORY RESPONSE TO EXERCISE

- Exercise \rightarrow muscle workload increase \rightarrow consumption of significant O₂ amounts, above baseline production of CO₂, lactic acid
- Increased O₂ demand → hyperpnea (ventilation increases 10–20x to compensate)
- Hyperpnea vs. hyperventilation
 - Hyperpnea: aims to maintain homeostasis → blood O₂ ,CO₂ levels remain relatively constant
 - Hyperventilation: excessive ventilation, blowing off too much $CO_2 \rightarrow low P_{CO2}$, respiratory alkalosis
- Exercise-induced ventilation not initially prompted by alterations in blood gases (rising P_{CO2}, declining P_{O2}, pH)
- Ventilation increases abruptly as exercise begins due to neural factors
 - Psychological stimuli (conscious exercise anticipation)
 - Simultaneous cortical motor activation of skeletal muscle, respiratory centers
 - Proprioceptors moving muscles, tendons, joints → stimulate respiratory centers
 - Initial neural regulation → early compensation to exercise as opposed to waiting for change in blood values
- Initial abrupt increase in ventilation is followed by gradual increase (reflective of lung CO₂ delivery rate) → eventually, steady state of ventilation appropriate for intensity achieved

 Exercise cessation → initial small abrupt decline in ventilation (higher neurological stimulation ends) → followed by gradual decrease to pre-exercise respiratory rate (gradual decrease in CO₂ flow to lungs)

PULMONARY CIRCULATORY RESPONSE

- Cardiac output increases to meet tissue O_2 demand \rightarrow increased right heart output \rightarrow increased blood flow through pulmonary circulation \rightarrow increased blood return to left heart \rightarrow increased output to systemic circulation \rightarrow increased O_2 tissue delivery
- Exercise → pulmonary resistance decrease → perfusion of more pulmonary capillary beds → more even distribution of pulmonary perfusion, ventilation → improved V/Q ratio (decreased physiological dead space) → increased gas exchange efficiency

HEMATOLOGICAL RESPONSE

Bohr effect

- Hemoglobin's oxygen binding affinity is inversely related to acidity, carbon dioxide concentration
 - Exercise \rightarrow increased tissue P_{co2}, decreased tissue pH, increased temperature \rightarrow right shift of O₂hemoglobin dissociation curve \rightarrow decreased affinity of hemoglobin for O₂ \rightarrow greater unloading of oxygen to exercising muscle

Regulation of blood gases during exercise

- Arterial P_{CO2} , P_{O2} remain nearly constant during exercise
- Venous P_{CO2} , P_{O2} may change significantly during exercise
 - Ventilation increases sufficiently to blow off all excess CO₂, maintain arterial homeostasis

Anaerobic respiration

- Leads to rise in lactic acid levels
- Not due to inadequate respiratory function
- Alveolar ventilation, pulmonary perfusion remain well matched during exercise → hemoglobin fully saturated
- Cardiac output limitation/limits of skeletal muscle to utilize oxygen → rising lactic acid

RESPIRATORY RESPONSE TO EXERCISE OVERVIEW

	RESPONSE
VENTILATION RATE	1
PHYSIOLOGIC DEAD SPACE	Ļ
V/Q RATIO	More equal distribution throughout lungs
PULMONARY BLOOD FLOW, CARDIAC OUTPUT	Î
O2 CONSUMPTION	1
CO2 CONSUMPTION	1
ARTERIAL Poz, Pcoz	No change
ARTERIAL pH	Light exercise: no change

PULMONARY CHANGES AT HIGH ALTITUDE & ALTITUDE SICKNESS

osms.it/pulmonary_changes_high_altitude_altitude_sickness

RESPIRATORY RESPONSE TO ALTITUDE

- Humans typically live at altitudes between sea level and 2400m/7800ft
- Altitudes > 2400m/7800ft \rightarrow lower overall atmospheric pressure \rightarrow lower P₀₂ \rightarrow hemoglobin less saturated at baseline
 - At rest at sea level hemoglobin typically unloads 20–25% O₂ content on a single trip through the circulatory system
 - Significant functional reserve allows for survival due to further hemoglobin unloading when poorly saturated

ACCLIMATIZATION

- Long-term, slow steady move from sea level to higher altitude → respiratory, hematopoietic adaptation
- Decrease in arterial P₀₂ → peripheral chemoreceptors more responsive to increases in P_{C02} → chemoreceptors stimulate medullary inspiratory center → increased breathing rate

Initial (fast) adaptation

- Some changes occur immediately, others over course of days
- Pulmonary
 - \circ Minute ventilation \rightarrow 2–3L/min higher than sea level
 - Increased ventilation \rightarrow decreased arterial CO₂ (<40mmHg) \rightarrow respiratory alkalosis \rightarrow increased blood pH \rightarrow inhibition of central, peripheral chemoreceptors \rightarrow offset increase in ventilation rate (initial effect)
 - As adaptation occurs → HCO₃⁻ excretion increases → HCO₃⁻ concentration in cerebrospinal fluid (CSF) decreases → CSF pH decreases toward normal → increased ventilation rate resumes
 - Respiratory alkalosis as result of rapid ascent to high altitude managed

with carbonic anhydrase inhibitors \rightarrow increased HCO₃⁻ excretion \rightarrow mild compensatory metabolic acidosis

- Hematological
 - Increase in 2,3-bisphosphoglyceric acid (2,3-BPG) concentration \rightarrow hemoglobin affinity for O₂ reduced \rightarrow increased unloading of O₂ at tissue level (also decreases efficiency of oxygen loading in lungs)
- Cardiac
 - Increased heart rate
 - Right heart hypertrophy: low P₀₂ alveolar gas → pulmonary vasculature vasoconstriction → increase in pulmonary vascular resistance → increased right heart strain → right ventricular hypertrophy
- Oxygen conservation
 - Non-essential body functions suppressed → reduction in food digestion efficiency (decreased circulation in favor of perfusing more important organs)

Late (slow) acclimatization

- Occurs over weeks to months
- Hematological: hypoxia → kidneys produce more erythropoietin → stimulates bone marrow production of red blood cells → total O₂ carrying capacity of blood increased
 - Essential compensation for living at altitude
 - \circ Increases blood viscosity \rightarrow greater blood flow resistance \rightarrow greater heart workload
 - Full acclimatization: increase in red blood cell plateaus
- Effect on complete blood count parameters
 - □ Total red cells: ↑
 - Hemoglobin: ↑
 - Hematocrit: ↑

- Mean corpuscular volume: unchanged
- Mean corpuscular hemoglobin concentration:
 [↑]

Exercise at altitude

- Adaptations normally serve to achieve homeostasis at rest → unless fully acclimatized intense physical activity → homeostasis loss → severe hypoxia
- This transient intentional hypoxia can be exploited by athletes → further adaptive changes to altitude → blood with greater oxygen carrying capacity → improved performance at lower altitude
- Late phase acclimatization of skeletal muscle includes: increased capillary concentration, increased myoglobin amount, increased mitochondria number, increased aerobic metabolism enzyme concentration

PHYSIOLOGICAL ACCLIMATIZATION TO HIGH ALTITUDE OVERVIEW

	RESPONSE
ALVEOLAR Poz	↓ (lower barometric pressure → lower atmospheric Po₂)
ARTERIAL Poz	↓ (hypoxemia)
ARTERIAL PH	↑ (respiratory alkalosis due to hyperventilation)
HEMOGLOBIN CONCENTRATION	↑ red blood cell concentration
2,3-DPG CONCENTRATION	Î
MUSCLE METABOLISM	↑ efficiency of aerobic metabolism
02-HEMOGLOBIN DISSOCIATION CURVE	Right shift (more oxygen unloaded to tissues)
PULMONARY ARTERIAL PRESSURE	↑ (secondary to increased pulmonary vascular resistance)
PULMONARY VASCULAR RESISTANCE	\uparrow (vasoconstriction)
VENTILATION RATE	<u></u>

ACUTE MOUNTAIN SICKNESS

- AKA altitude sickness
- Commonly associated with altitudes above 2400m/7800ft
 - Minor symptoms may occur at as low as 1500m/5000ft
 - Death zone: 5500m/18000ft, altitude considered incompatible with human life; acclimatization not possible
- Caused by sudden transition to altitude without sufficient acclimatization \rightarrow low atmospheric pressure \rightarrow low P₀₂ \rightarrow hypoxia
- Contributing factors
 - Rate of ascent
 - Rate of water vapor loss from lungs
 Activity level
- Sudden increase in altitude without taking time to acclimatize

Symptoms

• Headache, shortness of breath, nausea, dizziness, peripheral edema

Complications

- Severe complications of high altitude can be fatal
- High altitude pulmonary edema (HAPE)
 - Low atmospheric pressure → decreased oxygen partial pressures, poor oxygenation → increased pulmonary arterial, capillary pressures, idiopathic increase in permeability of vascular endothelium → fluid extravasation → pulmonary edema
- High altitude cerebral edema (HACE)
 - Hypoxia → increased cerebral microvascular permeability, failure of cellular ion pumps → vasogenic, cytotoxic edema

Treatment

Supplemental oxygen/immediate descent