GENERALLY, WHAT IS IT?

PATHOLOGY & CAUSES

Respiratory problems in newborns/infants; dyspnea to sudden death

SIGNS & SYMPTOMS

- Respiratory distress
 - Cyanosis, bradypnea, tachypnea, etc.

DIAGNOSIS

DIAGNOSTIC IMAGING

Chest X-ray

OTHER DIAGNOSTICS

• Pulse oximetry, arterial blood gases

Congenital heart defects

TREATMENT

OTHER INTERVENTIONS

 Supplemental oxygen therapy, assisted ventilation

MECONIUM ASPIRATION SYNDROME (MAS)

osms.it/meconium-aspiration-syndrome

PATHOLOGY & CAUSES

- Respiratory condition caused by aspiration of amniotic fluid contaminated by meconium (fetal stool) before/during birth
- Bile pigments
 - Meconium with black-green color
- MAS in approx. 10% of neonates exposed to meconium
- Meconium in airways
 - Airway obstruction: atelectasis

- Surfactant deactivation, synthesis inhibition
- Chemical pneumonitis: irritates air pathways
- Persistent pulmonary hypertension of newborn (PPHN): hypertrophy of pulmonary vessels due to chronic distress
- Medium for bacterial growth + reduces antibacterial activity → increases risk of infection

CAUSES

- Initiated by fetal distress due to perinatal complications (e.g. maternal hypertension, preeclampsia, placental insufficiency, oligohydramnios, infection, acidosis, maternal drug abuse)
 - □ Hypoxia → increased vagal stimulation → gastrointestinal (GI) tract peristalsis + sphincter relaxation → meconium release
 - □ Hypoxia → fetus gasping, aspiration of meconium-stained amniotic fluid

RISK FACTORS

 Term/post-term gestation (> 40 weeks); perinatal complications → fetal hypoxia, stress

COMPLICATIONS

 Pneumothorax, pulmonary hypertension, neonatal infection, infant respiratory distress syndrome, acidosis

SIGNS & SYMPTOMS

- Meconium spotting during labor
 - Green-yellow colour of amniotic fluid, infant's skin, umbilical cord
- Low APGAR score
 - Appearance, Pulse, Grimace, Activity, Respiration
- Respiratory distress
 - Labored breathing, tachypnea, bradycardia, intercostal/subcostal/ substernal retractions, cyanosis, nasal flaring
- Blood gas
 - Hypoxemia, hypercarbia, acidosis

Figure 127.1 A plain chest radiograph of a neonate demonstrating bilateral, diffuse, coarse opacities secondary to meconium aspiration.

DIAGNOSIS

DIAGNOSTIC IMAGING

Chest X-ray

- Patchy atelectasis, consolidation areas
- Hyperexpansion due to airway obstruction
- Pneumomediastinum due to air leak

Ultrasound

ECG to assess pulmonary hypertension

OTHER DIAGNOSTICS

Meconium

• In amniotic fluid, on infant, in trachea (if intubation required)

Respiratory distress

Pulse oximetry

Low oxygen saturation

Auscultation

Crackles, rhonchi sounds

TREATMENT

MEDICATIONS

- Antibiotics
- Maintain circulatory volume; correct existing metabolic imbalances
 - IV fluids; electrolytes, glucose; correct acidosis

OTHER INTERVENTIONS

• Transfer to neonatal intensive care unit (NICU)

Amnioinfusion

- Intrauterine saline infusion
- If meconium-stained amniotic fluid, preventative measures

Maintain oxygenation, ventilation

- Neutral thermal environment
- Decreased oxygen consumption
- Supplemental oxygen
- Mechanical ventilation
- If PPHN
 - Inhalation of nitric oxide (iNO), phosphodiesterase inhibitors
- If severe
 - □ ECMO



Figure 127.2 Flowchart depicting the pathophysiology of MAS.

Figure 127.3 A histology photomicrograph of the fetal membranes containing meconium laden macrophages.

NEONATAL RESPIRATORY DISTRESS SYNDROME

osms.it/neonatal-resp-distress

PATHOLOGY & CAUSES

Respiratory disease in neonates: loss of lung compliance (distensibility) due to lack of surfactant.

- AKA neonatal respiratory distress syndrome/surfactant deficiency disorder (SDD)
- Surfactant deficiency → ↑ surface tension → J lung compliance → alveoli collapse upon expiration (microatelectasis) → V/Q mismatch → intrapulmonary shunting + extrapulmonary shunting (e.g. through patent ductus arteriosus) → hypoxemia

CAUSES

- Surfactant production inhibition by insulin due to maternal diabetes
- Genetic mutations affect production of surfactant proteins
- Surfactant inactivation by meconium
- Pulmonary inflammation, edema may complicate respiratory distress

RISK FACTORS

• Premature delivery, cesarean delivery, maternal diabetes, intrauterine asphyxia, meconium aspiration syndrome

COMPLICATIONS

Acute

 Acidosis, hypoglycemia, hypotension, infection, diffuse atelectasis, respiratory failure, death

Chronic

 Intracranial hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, pulmonary hemorrhage, neurologic impairment

SIGNS & SYMPTOMS

- Respiratory distress
 - Tachypnea, tachycardia, intercostal/ subcostal/substernal retractions, cyanosis, nasal flaring, expiratory grunting
- Ventilatory failure (↑ blood CO₂), apnea

DIAGNOSIS

DIAGNOSTIC IMAGING

Chest X-ray

- Low lung volume
- Bilateral, diffuse granular/"ground glass" appearance
- Air bronchograms
 - Pulmonary edema secondary to inflammation, atelectasis

LAB RESULTS

- Oxygen saturation monitor
 - □ ↓ SaO₂, consider influence of preductal/ postductal gradients
- Metabolic acidosis, hypoxia

OTHER DIAGNOSTICS

Physical examination

 Lung auscultation (decreased breath sounds); respiratory distress

Post-mortem histopathology

- Lungs interspersed with hyper-distended alveolar ducts, collapsed alveoli
- Hyaline membranes lining/filling alveoli

TREATMENT

OTHER INTERVENTIONS

- Reduce oxygen consumption
- Radiant warmer, intravenous (IV) fluids with glucose

Assisted ventilation

- If symptoms do not subside
- Endotracheal intubation with synthetic/ animal exogenous surfactant therapy

Prevention

- Fetal lung maturity test (if preterm delivery anticipated)
 - Assess surfactant levels by amniocentesis; administer corticosteroids, promote lung maturity

Continuous positive airway pressure (CPAP)

If severe

 Extracorporeal membrane oxygenation (ECMO)

INSURE

INtubation-SURfactant-Extubation

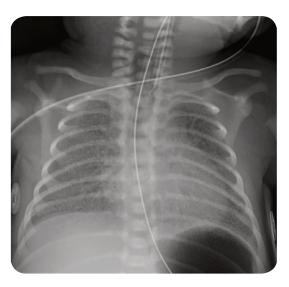


Figure 127.4 A plain chest radiograph of a neonate with infant respiratory distress syndrome. Both lung fields are granular in appearance.

SUDDEN INFANT DEATH SYNDROME (SIDS)

osms.it/sids

PATHOLOGY & CAUSES

- Sudden unexplainable death of infants < one year old despite thorough death scene investigation, analysis of perinatal history, autopsy
- Leading cause of death in infants < one year old; peak incidence, 8-16 weeks

CAUSES

Triple risk model

- Triggering event
 - Sleeping prone, infection
- Underlying vulnerability
 - Genetic polymorphisms involving autonomic nervous system function, cardiac conduction channels, altered cerebral serotonin (5-HT) signaling
- Developmental vulnerability
 - Immature neuroregulation of cardiorespiratory control, delayed immune functionality

RISK FACTORS

- Previous loss of infant from SIDS
- Periconceptional/postnatal smoking, substance abuse
- Teenage (< 20 years) pregnancy
- Inadequate prenatal care
- Premature birth
- Low birth weight
- Intrauterine growth restriction
- Infant of genetically male sex
- Sleep environment
 - Prone position (strongest modifiable risk factor); soft sleeping surface; loose blankets, pillows, stuffed toys; overheating; bed sharing

SIGNS & SYMPTOMS

• Infant fed, put to bed without sign of distress; found unresponsive

DIAGNOSIS

OTHER DIAGNOSTICS

- Diagnosis of exclusion
- Forensic autopsy, clinical history, death scene investigation

TREATMENT

OTHER INTERVENTIONS

- Emergency responders
 - Attempt cardiopulmonary resuscitation; document scene
- Transport to healthcare facility
 - Resuscitation attempt continued
- Physical examination, lab tests documented
- Interview of family members
 - When was infant last seen alive; who found infant, when; history of illnesses; sleeping environment
- Protective factors
 - Prone sleeping position, elimination of environmental risk factors; breastfeeding, room-sharing, not bedsharing, immunizations

TRANSIENT TACHYPNEA OF THE NEWBORN

osms.it/newborn-transient-tachypnea

PATHOLOGY & CAUSES

- Respiratory condition; presents in first hours of life, periods of non-acute rapid breathing
- AKA "quiet tachypnea"

CAUSES

 Delayed reabsorption of alveolar fluid through epithelial aquaporin channels → increased alveolar fluid → decreased pulmonary compliance, partial collapse of small airways, air trapping → hypoxemia, hypercapnia

RISK FACTORS

 Cesarean delivery without labor; maternal diabetes, asthma, smoking during pregnancy; pulmonary immaturity; surfactant deficiency

SIGNS & SYMPTOMS

- Symptoms present immediately after birth in response to excessive fluid in lungs
- Tachypnea (> 60 breaths/minute), nasal flaring, expiratory grunting, intercostal/ subcostal/substernal retractions
- Hypoxemia → hypoxia, cyanosis

DIAGNOSIS

DIAGNOSTIC IMAGING

Lung sonography

Chest X-ray

 Radiopaque levels of fluid in horizontal fissure of lungs; hyperinflated lungs; diaphragm flattening

OTHER DIAGNOSTICS

- Pulse oximetry
- Arterial blood gas assessment
 - Evaluate gas exchange, monitor acidbase balance

TREATMENT

OTHER INTERVENTIONS

- Commonly resolves during first three days of life
- Supplemental oxygen therapy; nasal CPAP if additional support required
- Neutral thermal environment: decrease oxygen consumption
- Orogastric feedings/IV fluids with glucose if PO feedings avoided due to increased respirations
- Antibiotics, if infection suspected